Bài 2.12 trang 48 SBT hình học 12

Giải bài 2.12 trang 48 sách bài tập hình học 12. Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác đáy của hình chóp và có chiều cao bằng chiều cao của hình chóp. Các mặt bên SAB, SBC , SCA cắt hình trụ theo những giao tuyến như thế nào?

Đề bài

Hình chóp tam giác đều S.ABC có SA = SB = SC = a và có góc giữa mặt bên và mặt phẳng đáy bằng \(\alpha \). Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác đáy của hình chóp và có chiều cao bằng chiều cao của hình chóp. Các mặt bên SAB , SBC , SCA cắt hình trụ theo những giao tuyến như thế nào?

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính diện tích xung quanh: \({S_{xq}} = 2\pi Rh\).

Lời giải chi tiết

Theo giả thiết ta có tam giác đáy ABC là tam giác đều.

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có  SA = a. Đặt OI = r , SO = h , ta có AO = 2r  và \(\displaystyle \widehat {SIA} = \alpha \)

Do đó  \(\displaystyle \left\{ {\matrix{{h = r\tan \alpha } \cr {{a^2} = {h^2} + 4{r^2}} \cr} } \right.\)

Vậy \(\displaystyle {a^2} = {r^2}{\tan ^2}\alpha  + 4{r^2} = {r^2}({\tan ^2}\alpha  + 4)\)

Ta suy ra   \(\displaystyle r = {a \over {\sqrt {{{\tan }^2}\alpha  + 4} }}\)  và \(\displaystyle h = {{a.\tan \alpha } \over {\sqrt {{{\tan }^2}\alpha  + 4} }}\)

Gọi  Sxq là diện tích xung quanh của hình trụ ta có công thức \(\displaystyle {S_{xq}} = 2\pi rl\)  trong đó  \(\displaystyle r = {a \over {\sqrt {{{\tan }^2}\alpha  + 4} }}\) và  \(\displaystyle l = h = {{a\tan \alpha } \over {\sqrt {{{\tan }^2}\alpha  + 4} }}\)

Vậy \(\displaystyle {S_{xq}} = 2\pi .{{{a^2}\tan \alpha } \over {{{\tan }^2}\alpha  + 4}}\)

Các mặt bên SAB, SBC, SCA là những phần của ba mặt phẳng không song song với trục và cũng không vuông góc với trục nên chúng cắt mặt phẳng xung quanh của hình trụ theo những cung elip. Các cung này có hình chiếu vuông góc trên mặt phẳng (ABC) tạo nên đường tròn đáy của hình trụ.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.