Bài 2.48 trang 83 SBT hình học 11

Giải bài 2.48 trang 83 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi G1 và G1 lần lượt là trọng tâm của các tam giác SBC và SCD...

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là tứ giác \(ABCD\). Gọi \(G_1\) và \(G_2\) lần lượt là trọng tâm của các tam giác \(SBC\) và \(SCD\)

Tìm giao tuyến của mặt phẳng \((AG_1G_2)\) với các mặt phẳng \((ABCD)\) và \((SCD)\).

Xác định thiết diện của hình chóp với mặt phẳng \((AG_1G_2)\).

Phương pháp giải - Xem chi tiết

- Sử dụng tính chất: "Nếu mặt phẳng \((\alpha )\) song song với đường thẳng \(a\) nằm trong mặt phẳng \((\beta )\) thì \((\alpha )\) cắt \((\beta )\) theo giao tuyến \(b//a\)".

- Tìm các giao tuyến của \((AG_1G_2)\) với các mặt của hình chóp suy ra thiết diện.

Lời giải chi tiết

Gọi \(I, J\) lần lượt là trung điểm của \(BC, CD\).

Ta có \(IJ\parallel {G_1}{G_2}\) nên giao tuyến của hai mặt phẳng \((AG_1G_2)\) và \((ABCD)\) là đường thẳng \(d\) qua \(A\) và song song với \(IJ\)

Gọi \(O = IJ \cap AC,\) \(K = {G_1}{G_2} \cap SO,L = AK \cap SC\)

\(LG_2\) cắt \(SD\) tại \(R\)

\(LG_2\) cắt \(SB\) tại \(Q\)

Khi đó \(\left( {A{G_1}{G_2}} \right) \cap \left( {SCD} \right) = LR\)

Ta có thiết diện là tứ giác \(AQLR\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 11

Giải sách bài tập toán hình học và đại số giải tích lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số giải tích toán 11 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.