Bài 3 trang 199 SBT hình học 11
Đề bài
Cho tứ diện SABC có SA, SB, SC vuông góc với nhau từng đôi một. Gọi H là hình chiếu vuông góc của S lên mp(ABC).
a) Chứng minh rằng H là trực tâm của tam giác ABC.
b) Chứng minh rằng \(\dfrac{1}{{S{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{S{B^2}}} + \dfrac{1}{{S{C^2}}}\)
c) Chứng minh rằng (SSBC)2 = (SHBC). (SABC) và
(SABC)2 = (SSAB)2 + (SSBC)2 + (SSCA)2
d) Chứng minh rằng
SG2 = (SA2 + SB2 + SC2)/9 (G là trọng tâm của tam giác ABC) và
(AB + BC + CA)2 ≤ 6(SA2 + SB2 + SC2).
e) Chứng minh rằng tam giác ABC có ba góc nhọn và
SA2tanA = SB2tanB = SC2tanC = 2SABC
Lời giải chi tiết
a) Ta chứng minh: CH ⊥ AB & AH ⊥ BC
Ta có: AB ⊥ SC (do SH ⊥ (ABC)) & AB ⊥ SH (do SC ⊥ (SAB))
⇒ AB ⊥ (SCH) ⇒ AB ⊥ CH (1)
Tương tự, ta có BC ⊥ (SAH) nên AH ⊥ BC (2)
Từ (1) và (2) cho ta H là trực tâm ΔABC.
b) Giả sử CH kéo dài cắt AB tại C’, ta có
AB ⊥ CC' (do H là trực tâm) & AB ⊥ SC' (do AB ⊥ (SCH))
Trong tam giác SCC’, ta có \(\dfrac{1}{{S{H^2}}} = \dfrac{1}{{S{C^2}}} + \dfrac{1}{{SC{'^2}}}\) (3)
Mà SC’ là đường cao trong tam giác vuông SAB nên
Tương tự, ta có (SSCA )2 = SHCA. SABC (7)
(SSAB )2 = SHAB. SABC (8)
Cộng (6), (7), (8) vế theo vế, ta có
\(\begin{array}{l}{\left( {{S_{SBC}}} \right)^2} + {\left( {{S_{SCA}}} \right)^2} + {\left( {{S_{SAB}}} \right)^2}\\ = {S_{ABC}}\left( {{S_{HBC}} + {S_{HCA}} + {S_{HAB}}} \right)\\ = {S_{ABC}}.{S_{ABC}} = {\left( {{S_{ABC}}} \right)^2}\end{array}\)
Áp dụng bất đẳng thức Cô-si, ta có:
2AB. BC ≤ AB2 + BC2
2CA. AB ≤ CA2 + AB2
2BC. CA ≤ BC2 + CA2
Suy ra (AB + BC + CA)2 = AB2 + BC2 + CA2 + 2(AB.BC + BC.CA + CA.AB)
≤ 3(AB2 + BC2 + CA2)
≤ 3(SA2 + SB2 + SB2 + SC2 + SC2 + SA2)
≤ 6(SA2 + SB2 + SC2).
e) Đặt SA = a, SB = b, SC = c
Trong ΔABC, ta có: \(\cos A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}\) \( = \dfrac{{{a^2}}}{{\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {c^2}} \right)} > 0}}\)
Tương tự cosB > 0, cosC > 0.
Vậy ΔABC có ba góc nhọn.
Mặt khác, ta có:
\(\begin{array}{l}S{A^4}.{\tan ^2}A = {a^4}\left( {\dfrac{1}{{{{\cos }^2}A}} - 1} \right)\\ = {a^4}\left[ {\dfrac{{\left( {{a^2} + {b^2}} \right)\left( {{a^2} + {c^2}} \right)}}{{{a^4}}} - 1} \right]\end{array}\)
= (a2 + b2)(a2 + c2) - a4 = a2 b2 + b2 c2 + c2 a2
= 4(SSAB2 + SSBC2 + SSCA2) = 4(SABC)2
⇒ SA2tanA = 2SABC.
Tương tự, ta có: SB2tanB = SC2tanC = 2SABC.
Vậy SA2tanA = SB2tanB = SC2tanC = 2SABC.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Ôn tập cuối năm Hình học 11
Bài tập & Lời giải:
- 👉 Bài 1 trang 199 SBT hình học 11
- 👉 Bài 2 trang 199 SBT hình học 11
- 👉 Bài 4 trang 200 SBT hình học 11
- 👉 Bài 5 trang 200 SBT hình học 11
- 👉 Bài 6 trang 200 SBT hình học 11
- 👉 Bài 7 trang 200 SBT hình học 11
- 👉 Bài 8 trang 200 SBT hình học 11
- 👉 Bài 9 trang 200 SBT hình học 11
- 👉 Bài tập trắc nghiệm trang 201, 202, 203, 204, 205 SBT Hình học 11
Xem thêm lời giải SBT Toán lớp 11
ĐẠI SỐ VÀ GIẢI TÍCH SBT 11
- 👉 Chương 1: Hàm số lượng giác phương trình lượng giác
- 👉 Chương 2: Tổ hợp xác suất
- 👉 Chương 3: Dãy số, cấp số cộng và cấp số nhân
- 👉 Chương 4: Giới hạn
- 👉 Chương 5: Đạo hàm
- 👉 Ôn tập cuối năm Đại số và giải tích 11
HÌNH HỌC SBT 11
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới