Bài 5 trang 147 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho tam giác ABC nội tiếp đường tròn (O ; R) có AB

Đề bài

Cho tam giác ABC nội tiếp đường tròn (O ; R) có AB là đường kính (AC < BC). Đường thẳng song song với AC vẽ từ O cắt đường tròn (O) tại I ( A, C, I, B theo thứ tự).

a) Chứng minh rằng \(OI \bot BC\).

b) Tiếp tuyến với đường tròn (O) tại B cắt đường thẳng OI tại M. Chứng minh rằng MC là tiếp tuyến của (O).

c) Kẻ CH vuông góc với AB tại H, gọi K là giao điểm của AM với CH. Chứng minh rằng K là trung điểm của CH.

Phương pháp giải - Xem chi tiết

a) Sử dụng quan hệ từ vuông góc đến song song.

b) Chứng minh \(\Delta OMC = \Delta OMB\,\), từ đó chứng minh \(\angle OCM = {90^0}\).

c) Kéo dài AN cắt BM tại N. Chứng minh M là trung điểm của BN.

Áp dụng định lí Ta-lét.

Lời giải chi tiết

 

a) Do \(C\) thuộc đường tròn đường kính \(AB \Rightarrow \angle ACB = {90^0} \Rightarrow AC \bot BC\).

Mà \(OI//AC\,\left( {gt} \right) \Rightarrow OI \bot BC\).

b) Vì \(OI//AC\,\,\left( {gt} \right) \Rightarrow \angle MOC = \angle OCA\) (so le trong) ; \(\angle MOB = \angle OAC\)(đồng vị).

Mà \(\Delta OAC\) cân tại \(O\,\,\left( {OA = OC} \right) \Rightarrow \angle OCA = \angle OAC\)

\( \Rightarrow \angle MOC = \angle MOB\)

Xét \(\Delta OMC\) và \(\Delta OMB\) có :

\(\begin{array}{l}OB = OC = R\\\angle MOC = \angle MOB\,\,\left( {cmt} \right)\\OM\,\,chung\\ \Rightarrow \Delta OMC = \Delta OMB\,\,\left( {c.g.c} \right)\\ \Rightarrow \angle OCM = \angle OBM = {90^0}\end{array}\)

\( \Rightarrow MC \bot OC\) tại \(C\). Mà \(OC\) là bán kính của \(\left( O \right)\).

\( \Rightarrow MC\) là tiếp tuyến của \(\left( O \right)\).

c) Kéo dài AN cắt BM tại N.

Ta có \(OI \bot BC\,\,\left( {cmt} \right)\)\( \Rightarrow OM \bot BC\).

Lại có \(AC \bot BC\,\,\left( {cmt} \right) \Rightarrow AC//OM\) hay \(AN//BM\).

Xét tam giác ABN có :

\(O\) là trung điểm của \(AB\).

\(AN//OM\) ;

\( \Rightarrow M\) là trung điểm của \(BN\) (tính chất đường trung bình của tam giác) \( \Rightarrow BM = MN\).

Ta có : \(CH \bot AB;\,\,BN \bot AB \Rightarrow CH//BN\).

Áp dụng định lí Ta-let ta có : \(\dfrac{{KH}}{{BM}} = \dfrac{{AK}}{{AM}} = \dfrac{{KC}}{{MN}}\).

Mà \(BM = MN\,\,\left( {cmt} \right)\) \( \Rightarrow KH = AK\) \( \Rightarrow K\) là trung điểm của \(AH\,\,\left( {dpcm} \right)\).

Xemloigiai.com

Xem thêm lời giải Tài liệu Dạy - học Toán 9

Giải bài tập Tài liệu Dạy - học Toán lớp 9, đầy đủ công thức, lý thuyết, định lí, chuyên đề toán. Phát triển tư duy đột phá trong dạy học Toán 9, để học tốt dạy học Toán 9

CHƯƠNG I : CĂN BẬC HAI - CĂN BẬC BA

CHƯƠNG II : HÀM SỐ BẬC NHẤT

CHƯƠNG III: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

CHƯƠNG IV: HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

CHƯƠNG II : ĐƯỜNG TRÒN

CHƯƠNG III: GÓC VỚI ĐƯỜNG TRÒN

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.