Câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Bài làm:
Cho hàm số \(y = \left| x \right|\)
LG a
Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0
Giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left| x \right| = 0 = f\left( 0 \right)\)
Vậy f liên tục tại x = 0
LG b
Tính đạo hàm của hàm số tại x = 0, nếu có.
Giải chi tiết:
Ta có:
\(\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {x \over x} = 1 \cr & \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over x} = - 1 \cr} \)
Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over x}\) nên hàm số f không có đạo hàm tại x = 0
LG c
Mệnh đề “Hàm số liên tục tại điểm x0 thì có đạo hàm tại x0 ” đúng hay sai ?
Giải chi tiết:
Mệnh đề sai. Thật vậy, hàm số \(f\left( x \right) = \left| x \right|\) liên tục tại điểm 0 (theo câu a) nhưng không có đạo hàm tại điểm đó (theo câu b).
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 1. Khái niệm đạo hàm
Bài tập & Lời giải:
- 👉 Câu 1 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 2 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 4 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 5 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 6 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 7 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 8 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 9 trang 192 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 10 trang 195 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 11 trang 195 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 12 trang 195 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 13 trang 195 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 15 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Xem thêm lời giải SGK Toán 11 Nâng cao
ĐẠI SỐ VÀ GIẢI TÍCH 11 NÂNG CAO
- 👉 CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
- 👉 CHƯƠNG II. TỔ HỢP VÀ XÁC SUẤT
- 👉 CHƯƠNG III: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN
- 👉 CHƯƠNG IV. GIỚI HẠN
- 👉 CHƯƠNG V. ĐẠO HÀM
- 👉 ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
HÌNH HỌC 11 NÂNG CAO
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới