Câu 17 trang 223 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 17 trang 223 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chữ nhật ABCD có AB = a, BC = b. Xét hai tia At, Ct’ cùng chiều và cùng vuông góc với mp(ABC). Lấy điểm M thuộc At, N thuộc Ct’ (M ≠ A, N ≠ C). Đặt AM = m, CN = n.

a) Tính góc giữa các mặt phẳng (MBD) và (NBD) với mặt phẳng (ABCD).

b) Tính góc giữa hai mặt phẳng (MBD) và (NBD). Tìm hệ thức giữa a, b, m, n để hai mặt phẳng đó vuông góc.

c) Khi a = b và mp(MBD) vuông góc với mp(NBD), hãy tính đường cao OI của tam giác MON (trong đó O là giao điểm của AC và BD), từ đó suy ra hai mặt phẳng (BMN) và (DMN) vuông góc với nhau.

Lời giải chi tiết

  

a) Kẻ \(AH \bot B{\rm{D}}\). Do \(MA \bot \left( {ABC{\rm{D}}} \right)\) nên \(MH \bot B{\rm{D}}\) (định lí ba dường vuông góc).

Ta có MAH là tam giác vuông tại A nên \(\widehat {MHA}\) là góc giữa mp(MBD) với mp(ABCD). Đặt \(\widehat {MHA} = \alpha \) thì

\(\eqalign{  & \tan \alpha  = {{MA} \over {AH}},MA = m  \cr  & AH = {{ab} \over {\sqrt {{a^2} + {b^2}} }}  \cr  &  \Rightarrow \tan \alpha  = {{m\sqrt {{a^2} + {b^2}} } \over {ab}} \cr} \)

Vậy góc giữa mặt phẳng (MBD) và mặt phẳng (ABCD) là α mà

\(\tan \alpha  = {{m\sqrt {{a^2} + {b^2}} } \over {ab}}\)

Tương tự, ta có \(\widehat {NKC}\) là góc giữa mp(NBD) với mp(ABCD) và đặt \(\widehat {NKC} = \beta \) thì

\(\tan \beta  = {{n\sqrt {{a^2} + {b^2}} } \over {ab}}\)

Vậy góc giữa mặt phẳng (NBD) và mặt phẳng (ABCD) là β mà

\(\tan \beta  = {{n\sqrt {{a^2} + {b^2}} } \over {ab}}\)

b) Kẻ Hx song song với KN, do AH // KC và At, Ct’ nằm về một phía của (ABCD) nên \(\widehat {MH{\rm{x}}}\) hoặc \({180^0} - \widehat {MH{\rm{x}}}\) là góc giữa hai mặt phẳng (MBD) và (NBD).

Đặt \(\widehat {MH{\rm{x}}} = \gamma \) thì \(\gamma  = {180^0} - \left( {\alpha  + \beta } \right)\)

\(\eqalign{  & \tan \gamma  =  - tan\left( {\alpha  + \beta } \right) = {{\tan \alpha  + \tan \beta } \over {\tan \alpha \tan \beta  - 1}}  \cr  &  = {{\sqrt {{a^2} + {b^2}} \left( {m + n} \right)ab} \over {mn\left( {{a^2} + {b^2}} \right) - {a^2}{b^2}}} \cr} \)

Vậy góc giữa hai mặt phẳng (MBD) và (NBD) là φ mà

\(\tan \varphi  = {{\sqrt {{a^2} + {b^2}} \left( {m + n} \right)ab} \over {\left| {mn\left( {{a^2} + {b^2}} \right) - {a^2}{b^2}} \right|}}\)

Từ đó, suy ra mặt phẳng (MBD) và mặt phẳng (NBD) vuông góc khi và chỉ khi

\(mn\left( {{a^2} + {b^2}} \right) - {a^2}{b^2} = 0\) hay \(mn = {{{a^2}{b^2}} \over {{a^2} + {b^2}}}\).

c)

 

Khi a = b thì H ≡ K ≡ O và \(mp\left( {MB{\rm{D}}} \right) \bot mp\left( {NB{\rm{D}}} \right)\) tức là \(mn = {{{a^2}} \over 2}\).

Gọi OI là đường cao của tam giác vuông OMN.

Ta có

 \(\eqalign{  & OI = {{2{{\rm{S}}_{MON}}} \over {MN}}  \cr  & 2{{\rm{S}}_{MON}} = 2\left[ {{S_{ACNM}} - \left( {{S_{AM{\rm{O}}}} + {S_{CNO}}} \right)} \right]  \cr  &  = 2\left( {{1 \over 2}\left( {m + n} \right)a\sqrt 2  - {1 \over 2}.{{a\sqrt 2 } \over 2}m - {1 \over 2}.{{a\sqrt 2 } \over 2}n} \right)  \cr  &  = {{a\sqrt 2 } \over 2}\left( {m + n} \right)  \cr  & MN = \sqrt {{{\left( {m - n} \right)}^2} + 2{{\rm{a}}^2}}   \cr  &  = \sqrt {{{\left( {m - n} \right)}^2} + 4mn}   \cr  &  = m + n \cr} \)

Từ đó \(OI = {{a\sqrt 2 } \over 2}\)

Vậy BID là tam giác vuông tại I.

Mặt khác \(B{\rm{D}} \bot \left( {MACN} \right)\) nên \(B{\rm{D}} \bot MN\) ; kết hợp với \(OI \bot MN\) ta có \(MN \bot \left( {BI{\rm{D}}} \right)\).

Vì \(\widehat {BI{\rm{D}}} = {90^0}\) nên hai mặt phẳng (BMN) và (DMN) vuông góc với nhau.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 11 Nâng cao

Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

HÌNH HỌC SBT 11 NÂNG CAO

CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG 4: GIỚI HẠN

CHƯƠNG 5: ĐẠO HÀM

CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.