Câu 53 trang 221 SGK Đại số và Giải tích 11 Nâng cao

Gọi (C) là đồ thị của hàm số

Bài làm:

Gọi (C) là đồ thị của hàm số \(f\left( x \right) = {x^4} + 2{x^2} - 1\). Viết phương trình tiếp tuyến của (C) trong mỗi trường hợp sau :

LG a

 Biết tung độ tiếp điểm bằng 2

Giải chi tiết:

\(f'\left( x \right) = 4{x^3} + 4x\) .Ta có \(2 = {y_0} = x_0^4 + 2x_0^2 - 1 \Leftrightarrow x_0^4 + 2x_0^2 - 3 = 0\)

\( \Leftrightarrow \left[ {\matrix{   {x_0^2 = 1}  \cr   {x_0^2 =  - 3\,\left( \text{loại} \right)}  \cr  }  \Leftrightarrow {x_0} =  \pm 1} \right.\)

* Với x0 = 1 ta có \(f'\left( 1 \right) = {4.1^3} + 4.1 = 8\)

Phương trình tiếp tuyến trong trường hợp này là :

\(y - 2 = 8\left( {x - 1} \right) \Leftrightarrow y = 8x - 6\)

* Với x0 = -1 ta có \(f'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} + 4.\left( { - 1} \right) =  - 8\)

Phương trình tiếp tuyến trong trường hợp này là :

\(y - 2 =  - 8\left( {x + 1} \right) \Leftrightarrow y =  - 8x - 6\)


LG b

Biết rằng tiếp tuyến song song với trục hoành

Giải chi tiết:

Tiếp tuyến song song với trục hoành tại điểm có hoành độ x0 thỏa :

\(f'\left( {{x_0}} \right) = 0 \Leftrightarrow 4x_0^3 + 4{x_0} = 0 \Leftrightarrow 4{x_0}\left( {x_0^2 + 1} \right) = 0 \)

\(\Leftrightarrow {x_0} = 0\,\,\left( {{y_0} =  - 1} \right)\)

Phương trình tiếp tuyến cần tìm là : \(y - \left( { - 1} \right) = 0\left( {x - 0} \right) \Leftrightarrow y =  - 1\)


LG c

Biết rằng tiếp tuyến vuông góc với đường thẳng \(y =  - {1 \over 8}x + 3\)

Giải chi tiết:

Vì tiếp tuyến phải tìm vuông góc với đường thẳng \(y =  - {1 \over 8}x + 3,\) nên hệ số vuông góc của tiếp tuyến bằng 8, suy ra :

\(\eqalign{  & y' = 8 \Leftrightarrow 4{x^3} + 4x - 8 = 0  \cr  &  \Leftrightarrow 4\left( {x - 1} \right)\left( {{x^2} + x + 2} \right) = 0 \Leftrightarrow x = 1 \cr} \)

Theo câu a, ta được phương trình tiếp tuyến phải tìm là : \(y = 8x – 6\)


LG d

 Biết rằng tiếp tuyến đi qua điểm A(0 ; -6)

Giải chi tiết:

Cách 1 : Phương trình tiếp tuyến tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) của đồ thị (C) là :

\(\eqalign{  & y = f'\left( {{x_0}} \right).\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)  \cr  &  \Leftrightarrow y = \left( {4x_0^3 + 4{x_0}} \right)\left( {x - {x_0}} \right) + x_0^4 + 2x_0^2 - 1 \cr} \)

Vì tiếp tuyến phải tìm đi qua điểm A(0 ; -6) nên ta có :

\(\eqalign{  &  - 6 = \left( {4x_0^3 + 4{x_0}} \right)\left( {0 - {x_0}} \right) + x_0^4 + 2x_0^2 - 1  \cr  &  \Leftrightarrow 3x_0^4 + 2x_0^2 - 5 = 0  \cr  &  \Leftrightarrow x_0^2 = 1\Leftrightarrow{x_0} =  \pm 1 \cr} \)

Theo câu a, phương trình của hai tiếp tuyến cần phải tìm lần lượt là :

\(y = 8x - 6;\;y =  - 8x -6\)

Cách 2 : Phương trình đường thẳng (1) đi qua điểm A(0 ; -6) với hệ số góc bằng k là : y = kx – 6

Để đường thẳng (1) là tiếp tuyến của đồ thị (C) (hay tiếp xúc với đồ thị (C)) thì ta phải tìm k sao cho :

\(\left\{ {\matrix{   {f\left( x \right) = kx - 6}  \cr   {f'\left( x \right) = k}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {{x^4} + 2{x^2} - 1 = kx - 6}  \cr   {4{x^3} + 4x = k}  \cr  } } \right.\)

Khử k từ hệ trên ta được : \(3{x^4} + 2{x^2} - 5 = 0 \Leftrightarrow {x^2} = 1 \Leftrightarrow x =  \pm 1\)

Suy ra \(k = ± 8\).

Vậy hai tiếp tuyến phải tìm có phương trình là : \(y = 8x - 6;\;y =  - 8x -6\)

Xemloigiai.com

Xem thêm lời giải SGK Toán 11 Nâng cao

Giải bài tập toán lớp 11 Nâng cao như là cuốn để học tốt Toán lớp 11 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 11 Nâng cao, giúp ôn luyện thi THPT Quốc gia

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.