Câu 53 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Bài làm:
Gọi (C) là đồ thị của hàm số \(f\left( x \right) = {x^4} + 2{x^2} - 1\). Viết phương trình tiếp tuyến của (C) trong mỗi trường hợp sau :
LG a
Biết tung độ tiếp điểm bằng 2
Giải chi tiết:
\(f'\left( x \right) = 4{x^3} + 4x\) .Ta có \(2 = {y_0} = x_0^4 + 2x_0^2 - 1 \Leftrightarrow x_0^4 + 2x_0^2 - 3 = 0\)
\( \Leftrightarrow \left[ {\matrix{ {x_0^2 = 1} \cr {x_0^2 = - 3\,\left( \text{loại} \right)} \cr } \Leftrightarrow {x_0} = \pm 1} \right.\)
* Với x0 = 1 ta có \(f'\left( 1 \right) = {4.1^3} + 4.1 = 8\)
Phương trình tiếp tuyến trong trường hợp này là :
\(y - 2 = 8\left( {x - 1} \right) \Leftrightarrow y = 8x - 6\)
* Với x0 = -1 ta có \(f'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} + 4.\left( { - 1} \right) = - 8\)
Phương trình tiếp tuyến trong trường hợp này là :
\(y - 2 = - 8\left( {x + 1} \right) \Leftrightarrow y = - 8x - 6\)
LG b
Biết rằng tiếp tuyến song song với trục hoành
Giải chi tiết:
Tiếp tuyến song song với trục hoành tại điểm có hoành độ x0 thỏa :
\(f'\left( {{x_0}} \right) = 0 \Leftrightarrow 4x_0^3 + 4{x_0} = 0 \Leftrightarrow 4{x_0}\left( {x_0^2 + 1} \right) = 0 \)
\(\Leftrightarrow {x_0} = 0\,\,\left( {{y_0} = - 1} \right)\)
Phương trình tiếp tuyến cần tìm là : \(y - \left( { - 1} \right) = 0\left( {x - 0} \right) \Leftrightarrow y = - 1\)
LG c
Biết rằng tiếp tuyến vuông góc với đường thẳng \(y = - {1 \over 8}x + 3\)
Giải chi tiết:
Vì tiếp tuyến phải tìm vuông góc với đường thẳng \(y = - {1 \over 8}x + 3,\) nên hệ số vuông góc của tiếp tuyến bằng 8, suy ra :
\(\eqalign{ & y' = 8 \Leftrightarrow 4{x^3} + 4x - 8 = 0 \cr & \Leftrightarrow 4\left( {x - 1} \right)\left( {{x^2} + x + 2} \right) = 0 \Leftrightarrow x = 1 \cr} \)
Theo câu a, ta được phương trình tiếp tuyến phải tìm là : \(y = 8x – 6\)
LG d
Biết rằng tiếp tuyến đi qua điểm A(0 ; -6)
Giải chi tiết:
Cách 1 : Phương trình tiếp tuyến tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) của đồ thị (C) là :
\(\eqalign{ & y = f'\left( {{x_0}} \right).\left( {x - {x_0}} \right) + f\left( {{x_0}} \right) \cr & \Leftrightarrow y = \left( {4x_0^3 + 4{x_0}} \right)\left( {x - {x_0}} \right) + x_0^4 + 2x_0^2 - 1 \cr} \)
Vì tiếp tuyến phải tìm đi qua điểm A(0 ; -6) nên ta có :
\(\eqalign{ & - 6 = \left( {4x_0^3 + 4{x_0}} \right)\left( {0 - {x_0}} \right) + x_0^4 + 2x_0^2 - 1 \cr & \Leftrightarrow 3x_0^4 + 2x_0^2 - 5 = 0 \cr & \Leftrightarrow x_0^2 = 1\Leftrightarrow{x_0} = \pm 1 \cr} \)
Theo câu a, phương trình của hai tiếp tuyến cần phải tìm lần lượt là :
\(y = 8x - 6;\;y = - 8x -6\)
Cách 2 : Phương trình đường thẳng (1) đi qua điểm A(0 ; -6) với hệ số góc bằng k là : y = kx – 6
Để đường thẳng (1) là tiếp tuyến của đồ thị (C) (hay tiếp xúc với đồ thị (C)) thì ta phải tìm k sao cho :
\(\left\{ {\matrix{ {f\left( x \right) = kx - 6} \cr {f'\left( x \right) = k} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {{x^4} + 2{x^2} - 1 = kx - 6} \cr {4{x^3} + 4x = k} \cr } } \right.\)
Khử k từ hệ trên ta được : \(3{x^4} + 2{x^2} - 5 = 0 \Leftrightarrow {x^2} = 1 \Leftrightarrow x = \pm 1\)
Suy ra \(k = ± 8\).
Vậy hai tiếp tuyến phải tìm có phương trình là : \(y = 8x - 6;\;y = - 8x -6\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Câu hỏi và bài tập ôn tập chương V
Bài tập & Lời giải:
- 👉 Câu 49 trang 220 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 50 trang 221 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 54 trang 221 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 55 trang 221 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 56 trang 221 SGK Đại số và Giải tích 11 Nâng cao
- 👉 Câu 57 trang 222 SGK Đại số và Giải tích 11 Nâng cao
Xem thêm lời giải SGK Toán 11 Nâng cao
ĐẠI SỐ VÀ GIẢI TÍCH 11 NÂNG CAO
- 👉 CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
- 👉 CHƯƠNG II. TỔ HỢP VÀ XÁC SUẤT
- 👉 CHƯƠNG III: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN
- 👉 CHƯƠNG IV. GIỚI HẠN
- 👉 CHƯƠNG V. ĐẠO HÀM
- 👉 ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
HÌNH HỌC 11 NÂNG CAO
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới