Câu 76 trang 65 Sách bài tập Hình học 11 nâng cao.

Gọi M, N, E lần lượt là trung điểm của AB, CD, SA.

Đề bài

Cho hình chóp S.ABCD có đáy là hình thang \(\left( {AD//BC,\,AD > BC} \right).\) Gọi M, N, E lần lượt là trung điểm của AB, CD, SA.

a) Chứng minh rằng:

\(MN//\left( {SBC} \right);\,\left( {MEN} \right)//\left( {SBC} \right).\)

b) Trong tam giác SAD vẽ EF//AD \(\left( {F \in SD} \right).\) Chứng minh rằng F là giao điểm của mặt phẳng (MNE) với SD. Từ đó suy ra thiết diện của hình chóp khi cắt bởi mp(MNE) là hình gì?

c) Chứng minh rằng SC//(MNE). Đường thẳng AF có song song với mp(SBC) hay không?

d) Cho M, N là hai điểm cố định lần lượt nằm trên các cạnh AB, CD sao cho MN//AD và E, F là hai điểm di động lần lượt trên các cạnh SA, SD sao cho EF//AD. Gọi I là giao điểm của ME và NF thì I di động trên đường nào?

Lời giải chi tiết

a) MN là đường trung bình của hình thang ABCD, suy ra:

\(\eqalign{
& \left. \matrix{
MN//BC \hfill \cr 
BC \subset \left( {SBC} \right) \hfill \cr} \right\} \Rightarrow MN//\left( {SBC} \right) \cr 
& \left. \matrix{
MN//\left( {SBC} \right) \hfill \cr 
ME//\left( {SBC} \right) \hfill \cr} \right\} \Rightarrow \left( {MEN} \right)//\left( {SBC} \right) \cr} \)

b) Ta có 

\(\eqalign{
& EF//AD \Rightarrow EF//MN \cr 
& \Rightarrow EF \subset \left( {MNE} \right) \Rightarrow F \in \left( {MNE} \right). \cr} \)

Mặt khác \(F \in SD,\) do đó \(F = \left( {MNE} \right) \cap SD.\)

Thiết diện là hình thang MNFE.

c) Theo câu a), ta có \(\left( {SBC} \right)//\left( {MNE} \right)\) mặt khác \(SC \subset \left( {SBC} \right)\)

Suy ra              SC // (MNE).

Đường thẳng AF không song song với mp(SBC) vì nếu AF // (SBC) thì :

\(AF \subset \left( {MNE} \right) \Rightarrow A \in \left( {MNE} \right)\) (vô lí).

d) Xét ba mặt phẳng (SAB), (SCD) và (MNE). Ta có:

\(\left( {SAB} \right) \cap \left( {SCD} \right) = SJ\) (J là giao điểm của AB và CD)

\(\eqalign{
& \left( {SAB} \right) \cap \left( {MNE} \right) = ME \cr 
& \left( {SCD} \right) \cap \left( {MNE} \right) = NF \cr} \)

Theo định lí về giao tuyến của ba mặt phẳng thì ba đường thẳng SJ, ME, NF đồng quy. Vậy điểm I phải di động trên đường thẳng SJ (trừ những điểm trong của đoạn SJ).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 11 Nâng cao

Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

HÌNH HỌC SBT 11 NÂNG CAO

CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG 4: GIỚI HẠN

CHƯƠNG 5: ĐẠO HÀM

CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.