Câu hỏi 4 trang 167 SGK Đại số và Giải tích 11

Tính đạo hàm của hàm số...

Đề bài

Tính đạo hàm của hàm số:

\(y = \tan ({\pi  \over 2} – x)\)  với \(x ≠ kπ, k ∈ Z\) 

Phương pháp giải - Xem chi tiết

Cách 1: Đưa về \(y = \tan ({\pi  \over 2} – x) = \cot x\) rồi tính đạo hàm.

Cách 2: Sử dụng công thức tính đạo hàm hàm hợp với \(y = \tan u ; \, u = {\pi  \over 2} – x\)

Lời giải chi tiết

Cách 1:

Vì \({\pi  \over 2} – x\) và \(x\) là hai góc phụ nhau nên \(\tan ({\pi  \over 2} – x) = \cot x\)

\(\Rightarrow y' =  \tan' ({\pi  \over 2} – x) = \cot' x = {{ - 1} \over {{{\sin }^2}x}}\).

Cách 2:

Đặt \(u = {\pi  \over 2} - x\) thì \(y = \tan u \Rightarrow y' = \tan' u . u'_x\) 

Mà \( \tan' u = {1 \over {{{\cos }^2}u}}; \, u'_x = ({\pi  \over 2} - x)' = -1.\)

\(\Rightarrow y' =  {{ 1} \over {{{\cos }^2}u}} . (-1)= {{-1} \over {{{\cos }^2}u}}= {{ - 1} \over {{{\cos }^2}({\pi  \over 2} - x)}} = {{ - 1} \over {{{\sin }^2}x}}\) (do cos⁡(\({\pi  \over 2}-x) = sin⁡x)\)

Xemloigiai.com

Xem thêm lời giải SGK Toán lớp 11

Giải bài tập toán lớp 11 như là cuốn để học tốt Toán lớp 11. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và giải tích, hình học SGK Toán lớp 11, giúp ôn luyện thi THPT Quốc gia. Giai toan 11 xem mục lục giai toan lop 11 sach giao khoa duoi day

ĐẠI SỐ VÀ GIẢI TÍCH 11

HÌNH HỌC 11

CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG II. TỔ HỢP - XÁC SUẤT

CHƯƠNG III. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG IV. GIỚI HẠN

CHƯƠNG V. ĐẠO HÀM

CHƯƠNG I. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Xem Thêm

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.