Đề kiểm tra 15 phút - Đề số 5 - Chương 3 - Hình học 11
Đề bài
Câu 1. Khẳng định nào sau đây sai?
A. Nếu đường thẳng \(d \bot \left( \alpha \right)\) thì d vuông góc với hai đường thẳng trong \(\left( \alpha \right)\).
B. Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau nằm trong \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
C. Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong \(\left( \alpha \right)\) thì d vuông góc với bất kì đường thẳng nào nằm trong \(\left( \alpha \right)\).
D. Nếu \(d \bot \left( \alpha \right)\) và đường thẳng a // d thì \(d \bot a\).
Câu 2. Cho hình bình hành ABCD tâm I, S là điểm nằm ngoài mặt phẳng (ABCD). Tìm mệnh đề sai .
A. \(\overrightarrow {SA} - \overrightarrow {SB} = \overrightarrow {SD} - \overrightarrow {SC} \).
B. \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).
C. \(\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SI} \).
D. \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Câu 3. Cho chóp S. ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Điểm cách đều các đỉnh của hình chóp là:
A. Trung điểm SB.
B. Trung điểm SC.
C. Trung điểm SD.
D. Điểm nằm trên đường thẳng d // SA và không thuộc SC.
Câu 4. Cho hình lập phương ABCDEFGH, góc giữa hai đường thẳng AB và GH là:
A. 00 B. 450
C. 1800 D. 900.
Câu 5. Cho hình lập phương ABCD. A’B’C’D’ . Mặt phẳng (ACC’A’) vuông góc với mặt phẳng nào sau đây:
A. (ABCD). B.(CDD’C’).
C. (BDC’). D. (A’BD).
Câu 6. Cho hình hộp ABCD. A’B’C’D’ có tất cả các cạnh bằng nhau. Điều nào sau đây sai?
A. \(AC \bot B'D'\).
B. ACC’A’ là hình thoi.
C. Cả A và B đều sai.
D. Cả A và B đều đúng.
Câu 7. Cho ba đường thẳng a, b, c phân biệt cùng đi qua điểm O. Tìm câu trả lời đúng.
A. Nếu c vuông góc với a và b thì hai trong ba đường thẳng a, b, c cùng phương.
B. Nếu c vuông góc với a và b thì a, b, c không cùng nằm trong một mặt phẳng .
C. Nếu c vuông góc với a và b thì a, b, c cùng nằm trong một mặt phẳng .
D. Cà A, B, C đều sai.
Câu 8. Cho hình chóp S. ABCD có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:
A. 00 B. 450
C. 600 D. 900.
Câu 9. Trong không gian cho hai hình vuông ABCD và A’B’C’D’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O’. Tứ giác CDD’C’ là hình gì?
A.Hình bình hành.
B. Hình vuông.
C. Hình thang.
D. Hình chữ nhật.
Câu 10. Cho hình lăng trụ ABC.A’B’C’ với G là trọng tâm của tam giác A’B’C’. Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\,\overrightarrow {AB} = \overrightarrow b ,\,\overrightarrow {AC} = \overrightarrow c \) . Vec tơ \(\overrightarrow {B'C} \) bằng:
A.\(\overrightarrow a - \overrightarrow b - \overrightarrow c \) .
B.\(\overrightarrow c - \overrightarrow a - \overrightarrow b \) .
C.\(\overrightarrow b - \overrightarrow a - \overrightarrow c \) .
D.\(\overrightarrow a + \overrightarrow b + \overrightarrow c \) .
Lời giải chi tiết
Câu |
1 |
2 |
3 |
4 |
5 |
Đáp án |
C |
B |
B |
A |
A |
Câu |
6 |
7 |
8 |
9 |
10 |
Đáp án |
D |
B |
C |
D |
B |
Câu 2.
Do I là tâm hình bình hành ABCD nên \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SI} \) .
Chọn đáp án B.
Câu 3.
Ta có \(\left\{ \begin{array}{l}SA \bot BC\,\,(do\,SA \bot (ABCD))\\BA \bot BC\end{array} \right.\,\, \Rightarrow BC \bot \left( {SAB} \right)\,\, \Rightarrow BC \bot SB\) . Do đó tam giác SBC vuông tại B.
Lại có \(\left\{ \begin{array}{l}SA \bot CD\\AD \bot CD\end{array} \right.\,\, \Rightarrow CD \bot (SAD)\,\, \Rightarrow CD \bot SD\) . Do đó tam giác SDC vuông tại D.
Loại A do tam giác SBC vuông tại B nên trung điểm SB không cách đều ba điểm S, B, C.
Loại C do tam giác SCD vuông tại D nên trung điểm SD không cách đều ba điểm S, C, D.
Đáp án B đúng do tam giác SBC vuông tại B có SC là cạnh huyền nên trung điểm SC cách đều ba điểm S, B, C; do tam giác SCD vuông tại D có SC là cạnh huyền nên trung điểm SC cáchđều ba điểm S, C, D.
Câu 4.
Do ABCD.EFGH là hình lập phương nên AB // GH. Chọn đáp án A.
Câu 5.
Do ABCD.A’B’C’D’ là hình lập phương nên ta có
\(\begin{array}{l}\left\{ \begin{array}{l}AA' \bot AD\\AA' \bot AB\end{array} \right.\,\, \Rightarrow \,AA' \bot (ABCD)\\AA' \subset (ACC'A') \Rightarrow \,\,(ABCD) \bot (ACC'A')\end{array}\)
Vậy góc giữa (ABCD) vuông góc với (ACC’A’). Chọn đáp án A.
Câu 6.
ABCD.A’B’C’D’ là hình hộp nên các mặt đều là hình bình hành, do đó chưa đủ giả thiết để chứng minh được \(AC \bot B'D'\).
Các cạnh của hình hộp đều bằng a, tứ giác ABCD là hinh bình hành cạnh a, đường chéo có thể bằng a hoặc không bằng a nên ACC’A’ là hình bình hành , chưa chắc là hình thoi.
Vậy đáp án A và B đều là đáp án đúng. Chọn đáp án D.
Câu 8.
Hai mặt phẳng (SAC) và (SAB) có SA chung, \(SA \bot AB,\,SA \bot AC\,\, \Rightarrow \left( {(SAC),(SAB)} \right) = \left( {AB,AC} \right) = {60^0}\) .
Chọn đáp án C.
Câu 9. Tứ giác CDD’C’ là hình bình hành. Lại có \(DC \bot \left( {ADD'} \right) \Rightarrow \,\,DC \bot DD'\) . Vậy tứ giác CDD’C’ là hình chữ nhật. Chọn đáp ánD
Câu 10.
Ta có \(\overrightarrow {B'C} = \overrightarrow {AC} - \overrightarrow {AB'} = \overrightarrow {AC} - \left( {\overrightarrow {AA'} + \overrightarrow {A'B'} } \right) = \overrightarrow {AC} - \overrightarrow {AA'} - \overrightarrow {AB} = \overrightarrow c - \overrightarrow a - \overrightarrow b \).
Chọn đáp án B
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Đề kiểm tra 15 phút - Chương 3 - Hình học 11
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.
Đề thi giữa kì 1 Toán 11
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 11
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa kì 2 Toán 11
- 👉 Đề ôn tập giữa kì 2- Có đáp án và lời giải chi tiết
- 👉 Đề thi giữa học kì 2 của các trường có lời giải – Mới nhất
Đề thi học kì 2 Toán 11
Đề kiểm tra 15 phút Toán 11
- 👉 Đề kiểm tra 15 phút – Chương 1 – Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 3 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 3 - Hình học 11
Đề kiểm tra 1 tiết Toán 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết ) - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 11
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới