Phương trình tiếp tuyến của đồ thị hàm số

Phương trình tiếp tuyến của đồ thị hàm số

Lý thuyết:

1. Kiến thức cần nhớ

Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\). Khi đó:

- Hệ số góc của tiếp tuyến tại điểm \({x_0}\) là:

\(k = f'\left( {{x_0}} \right)\)

- Phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

2. Một số dạng toán thường gặp

Dạng 1: Tiếp tuyến tại điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.

Cho hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại \(M\).

Phương pháp:

- Bước 1: Tính đạo hàm \(f'\left( x \right)\) và tìm hệ số góc của tiếp tuyến \(k = f'\left( {{x_0}} \right)\).

- Bước 2: Viết phương trình tiếp tuyến tại \(M\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).

Dạng 2: Tiếp tuyến có hệ số góc \(k\) cho trước.

Phương pháp:

- Bước 1: Gọi \(\left( \Delta  \right)\) là tiếp tuyến cần tìm có hệ số góc \(k\).

- Bước 2: Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Khi đó \({x_0}\) thỏa mãn \(f'\left( {{x_0}} \right) = k\).

- Bước 3: Giải phương trình trên tìm \({x_0} \Rightarrow {y_0} = f\left( {{x_0}} \right)\).

- Bước 4: Phương trình tiếp tuyến cần tìm là: \(y = k\left( {x - {x_0}} \right) + {y_0}\).

Dạng 3: Tiếp tuyến đi qua một điểm.

Cho đồ thị hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(A\left( {a;b} \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) biết tiếp tuyến đi qua \(A\).

Phương pháp:

- Bước 1: Gọi \(\Delta \) là đường thẳng qua \(A\) và có hệ số góc \(k\). Khi đó \(\Delta :y = k\left( {x - a} \right) + b\)

- Bước 2: Để \(\Delta \) là tiếp tuyến của \(\left( C \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = k\left( {x - a} \right) + b\\f'\left( x \right) = k\end{array} \right.\)  có nghiệm.

- Bước 3: Giải hệ phương trình trên tìm \(k\), thay vào ta được phương trình tiếp tuyến cần tìm.

- Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\) là \(k = f'\left( {{x_0}} \right)\).

- Cho đường thẳng \(d:y = {k_d}x + a\).

+) \(\Delta  \bot d \Rightarrow {k_\Delta }.{k_d} =  - 1 \Leftrightarrow {k_\Delta } =  - \dfrac{1}{{{k_d}}}\)

+) \(\Delta //d \Rightarrow {k_\Delta } = {k_d}\)

+) \(\left( {\Delta ,d} \right) = \alpha  \Rightarrow \tan \alpha  = \left| {\dfrac{{{k_\Delta } - {k_d}}}{{1 + {k_\Delta }.{k_d}}}} \right|\)

+) \(\left( {\Delta ,Ox} \right) = \alpha  \Rightarrow {k_\Delta } =  \pm \tan \alpha \)

Xem thêm lời giải SGK Toán lớp 11

Giải bài tập toán lớp 11 như là cuốn để học tốt Toán lớp 11. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và giải tích, hình học SGK Toán lớp 11, giúp ôn luyện thi THPT Quốc gia. Giai toan 11 xem mục lục giai toan lop 11 sach giao khoa duoi day

ĐẠI SỐ VÀ GIẢI TÍCH 11

HÌNH HỌC 11

CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG II. TỔ HỢP - XÁC SUẤT

CHƯƠNG III. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG IV. GIỚI HẠN

CHƯƠNG V. ĐẠO HÀM

CHƯƠNG I. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Xem Thêm

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.