Bài 1 trang 46 Vở bài tập toán 8 tập 1

Giải bài 1 trang 46 VBT toán 8 tập 1. Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng: a) [3x(x+5)]/[2(x+5)]= 3x/2

Bài làm:

Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

LG a

 \( \dfrac{3x(x + 5)}{2(x + 5)}= \dfrac{3x}{2}\) 

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\).

Lời giải chi tiết:

Ta coi \( \dfrac{3x(x + 5)}{2(x + 5)}\) là \(\dfrac{A}{B}\); \(\dfrac{3x}{2}\) là \(\dfrac{C}{D}\). Theo định nghĩa hai phân thức bằng nhau ta cần kiểm tra đẳng thức \(AD=BC\); tức là cần kiểm tra đẳng thức: 

\(3x(x+5).2=2(x+5).3x\)

Ta có: \(3x(x+5).2=6x(x+5)\)

           \(2(x+5).3x=6x(x+5)\)

Suy ra: \(3x(x+5).2=2(x+5).3x\)

Vậy \( \dfrac{3x(x + 5)}{2(x + 5)}= \dfrac{3x}{2}.\)


LG b

\( \dfrac{x + 2}{x - 1}= \dfrac{(x + 2)(x + 1)}{x^{2} - 1}\)  

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\). 

Lời giải chi tiết:

Tương tự như giải câu a), ta cần kiểm tra đẳng thức:

\((x + 2)(x^2- 1)\)\(=(x - 1) (x + 2)(x + 1)\) 

Ta có: \((x + 2)({x^2} - 1) \)

\(= \left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right) \)\(= \left( {x - 1} \right)\left( {x + 2} \right)\left( {x + 1} \right)\)

Vậy \( \dfrac{x + 2}{x - 1}= \dfrac{(x + 2)(x + 1)}{x^{2} - 1}\)


LG c

\( \dfrac{x^{2} - x - 2}{x + 1}= \dfrac{x^{2}- 3x + 2}{x - 1}\) 

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\).  

Lời giải chi tiết:

Tương tự như giải câu a), ta cần kiểm tra đẳng thức:

\( \left( {{x^2} - x - 2} \right)\left( {x - 1} \right)\)\(= \left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right)\)

Ta có: \(\left( {{x^2} - x - 2} \right)\left( {x - 1} \right) \)\(\,= {x^3} - {x^2} - {x^2} + x - 2x + 2 \)\(\,= {x^3} - 2{x^2} - x + 2\)

\(\left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right) \)\(\,= {x^3} - 3{x^2} + 2x + {x^2} - 3x + 2 \)\(\,= {x^3} - 2{x^2} - x + 2\) 

Suy ra: \( \left( {{x^2} - x - 2} \right)\left( {x - 1} \right)\)\(= \left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right)\)

Vậy \( \dfrac{x^{2} - x - 2}{x + 1}= \dfrac{x^{2}- 3x + 2}{x - 1}\)


LG d

\( \dfrac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\)  

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\).  

Lời giải chi tiết:

Vì đa thức \(x+2\) cũng là phân thức \(\dfrac{{x + 2}}{1}\) nên có thể viết đẳng thức đã cho dưới dạng: \(\dfrac{{{x^3} + 8}}{{{x^2} - 2x + 4}} = \dfrac{{x + 2}}{1}\). Giải tương tự như hai câu trên, ta có: 

\((x^3+ 8).1 = x^3+ 8\) 

\(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = {x^3} + 8\)

Vậy \( \dfrac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\)

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.