Bài 11 trang 95 Vở bài tập toán 9 tập 2

Giải bài 11 trang 95 VBT toán 9 tập 2. Cho đường tròn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M và N...

Đề bài

Cho đường tròn tâm \(O\), đường kính \(AB\) và \(S\) là một điểm nằm bên ngoài đường tròn. \(SA\) và \(SB\) lần lượt cắt đường tròn tại \(M\) và \(N\). Gọi \(H\) là giao điểm của \(BM\) và \(AN\). Chứng minh rằng \(SH\) vuông góc với \(AB\). 

Phương pháp giải - Xem chi tiết

Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông để chỉ ra các đường cao của tam giác \(SAB.\)

Sử dụng tính chất trực tâm để suy ra \(SH \bot AB.\)

Lời giải chi tiết

Vì \(M,N\) nằm trên đường tròn tâm \(O\) nên \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) ( góc nội tiếp chắn nửa đường tròn)

Suy ra \(AN \bot SB\) và \(BM \bot SA.\)

Do đó, \(AN;BM\) là hai đường cao của \(\Delta SAB\) và \(H\) là giao điểm của \(AN\) và \(BM.\)

Vậy \(SH \bot AB\) vì \(H\) là trực tâm của tam giác \(ABC.\)

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 9

Giải VBT toán 9 tập 1, tập 2 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.