Bài 12 trang 95 Vở bài tập toán 9 tập 2

Giải bài 12 trang 95 VBT toán 9 tập 2. Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Vẽ các đường kính AC và AD của hai đường tròn. Chứng minh rằng ba điểm C, B, D thẳng hàng...

Đề bài

Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\). Vẽ các đường kính \(AC\) và \(AD\) của hai đường tròn. Chứng minh rằng ba điểm \(C, B, D\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông.

Từ đó chứng minh \(\widehat {ABC} + \widehat {ABD} = 180^\circ \)

Lời giải chi tiết

Nối \(AB,BC,BD.\) Xét các góc nội tiếp :

Với đường tròn \(\left( O \right)\) ta có \(\widehat {ABC} = 90^\circ .\)

Vì \(\widehat {ABC}\) là góc nội tiếp chắn nửa đường tròn.

Với đường tròn \(\left( {O'} \right)\) ta có \(\widehat {ABD} = 90^\circ .\)

Vì \(\widehat {ABD}\) là góc nội tiếp chắn nửa đường tròn.

 \( \Rightarrow \widehat {ABC} + \widehat {ABD} = 180^\circ \)

Vậy ba điểm \(C,B,D\) thẳng hàng.

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 9

Giải VBT toán 9 tập 1, tập 2 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.