Bài 15 trang 119 SGK Toán 8 tập 1

Giải bài 15 trang 119 SGK Toán 8 tập 1. Đố. Vẽ hình chữ nhật ABCD có AB = 5cm, BC = 3cm.

Đề bài

Đố. Vẽ hình chữ nhật \(ABCD\) có \(AB = 5\,cm, BC = 3\,cm.\)

a) Hãy vẽ một hình chữ nhật có diện tích nhỏ hơn nhưng có chu vi lớn hơn hình chữ nhật \(ABCD.\) Vẽ được mấy hình như vậy.

b) Hãy vẽ hình vuông có chu vi bằng chu vi hình chữ nhật \(ABCD.\) Vẽ được mấy hình vuông như vậy? So sánh diện tích hình chữ nhật với diện tích hình vuông có cùng chu vi vừa vẽ. Tại sao trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính diện tích hình chữ nhật, diện tích hình vuông.

Lời giải chi tiết

a) Hình chữ nhật \(ABCD\) đã cho có diện tích là \({S_{ABCD}} = 3.5 = 15\,(c{m^2}).\)

Chu vi hình chữ nhật \(ABCD\) là \((5+3).2=16\;(cm)\)

- Hình chữ nhật có chiều rộng là \(1\,cm\), chiều dài là \(12\,cm\) có diện tích là \(12c{m^2}<{S_{ABCD}}\) và chu vi là \(( 1+12).2 = 26\,(cm)\) (có \(26>16\)).

- Hình chữ nhật có chiều rộng là \(2\,cm\), chiều dài là \(7\,cm\) có diện tích là \(14c{m^2}<{S_{ABCD}}\) và chu vi là \((2+7).2 = 18\,(cm)\) (có \(18 > 16\)).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật \(ABCD\) cho trước.

b) Chu vi hình chữ nhật \(ABCD\) đã cho là: 

           \((5+3).2 = 16 \,(cm)\)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật \(ABCD\) là:

            \(16 : 4 = 4\,(cm).\)

Diện tích hình vuông này là \(4.4 = 16 ({cm^2})\) 

Vậy \({S_{hcn}} < {S_{hv}}\)

Vẽ được một hình vuông như vậy.

+) Tổng quát:  Giả sử hình chữ nhật có các kích thước là \(a, b\). Khi đó: 

- Diện tích của hình chữ nhật đó là: \(ab\)

- Chu vi hình chữ nhật đó là: \(2.(a+b)\) 

- Cạnh của hình vuông có chu vi bằng chu vi hình chữ nhật là: \(\dfrac{{2.(a + b)}}{4}=\dfrac{{a + b}}{2}\)

Vậy diện tích hình vuông đó là: \({\left( {\dfrac{{a + b}}{2}} \right)^2}\)

Ta có:

\({\left( {\dfrac{{a + b}}{2}} \right)^2} = \dfrac{{{{\left( {a + b} \right)}^2}}}{4} \)\(\,= \dfrac{{{a^2} + 2{\rm{a}}b + {b^2}}}{4}\)\( = \dfrac{{{{\left( {a - b} \right)}^2} + 4{\rm{a}}b}}{4} \)\(\,= \dfrac{{{{\left( {a - b} \right)}^2}}}{4} + ab \ge ab\)

( vì \(\dfrac{{{{\left( {a - b} \right)}^2}}}{4} \ge 0\) với mọi \(\,a,\,b\))

Vậy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Xemloigiai.com

Xem thêm lời giải SGK Toán lớp 8

Giải bài tập toán lớp 8 như là cuốn để học tốt Toán lớp 8. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 8. Giai toan 8 xem mục lục giai toan lop 8 sach giao khoa duoi day

PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

CHƯƠNG I. PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC

CHƯƠNG II. PHÂN THỨC ĐẠI SỐ

CHƯƠNG I. TỨ GIÁC

CHƯƠNG II. ĐA GIÁC, DIỆN TÍCH ĐA GIÁC

CHƯƠNG III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG IV. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG III. TAM GIÁC ĐỒNG DẠNG

CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM - TOÁN 8

Xem Thêm

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.