Bài 19 trang 19 Vở bài tập toán 8 tập 2

Giải bài 19 trang 19 VBT toán 8 tập 2. Giải các phương trình ...

Bài làm:

Giải các phương trình:

LG a

\( \dfrac{2x-1}{x-1}+1=\dfrac{1}{x-1}\); 

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Điều kiện xác định: \(x-1\ne 0\), tức là \(x \ne 1\).

Quy đồng mẫu thức:\({\dfrac{{2{\rm{x}} - 1}}{{x - 1}} + 1 = \dfrac{1}{{x - 1}}}\)

\(\Leftrightarrow \dfrac{{2{\rm{x}} - 1}}{{x - 1}} + \dfrac{{x - 1}}{{x - 1}} = \dfrac{1}{{x - 1}}\)

Khử mẫu thức, ta được phương trình: \( 2x - 1 + x - 1 = 1\)

Giải phương trình ta được: 

\(3x- 2 = 1 \Leftrightarrow 3x = 3  \Leftrightarrow x= 1\)

Kiểm tra kết quả: Giá trị \(x=1\) không thỏa mãn điều kiên xác định.

Kết luận: Vậy phương trình vô nghiệm.


LG b

 \( \dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\) 

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Điều kiện xác định: \(2x+2\ne 0\), tức là \(x \ne- 1\).

Quy đồng mẫu thức: \(\dfrac{{5{\text{x}}}}{{2\left( {{\text{x}} + 1} \right)}} + \dfrac{{2x + 2}}{{2\left( {x + 1} \right)}} =  - \dfrac{{6.2}}{{2\left( {x + 1} \right)}}\)

Khử mẫu thức, ta được phương trình: \(5x + 2x + 2 =  - 12\)

Giải phương trình ta được: 

\(7x  =  - 14 \Leftrightarrow x =  - 14 :7=-2\)

Kiểm tra kết quả: Giá trị \(x=-2\) thỏa mãn điều kiên xác định.

Kết luận: Vậy phương trình có nghiệm \(x = -2\). 


LG c

 \(x +  \dfrac{1}{x}= x^2+\dfrac{1}{x^{2}}\); 

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

 Điều kiện xác định: \(x \ne 0\).

Quy đồng mẫu thức: \(\dfrac{{{x^3}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} = \dfrac{{{x^4}}}{{{x^2}}} + \dfrac{1}{{{x^2}}}\)

Khử mẫu thức, ta được phương trình: \({x^3} + x = {x^4} + 1\)  (1)

Giải phương trình (1):

\(\begin{array}{l}
(1)\;\Leftrightarrow {x^4} - {x^3} - x + 1 = 0\\
\Leftrightarrow {x^3}\left( {x - 1} \right) - \left( {x - 1} \right) = 0\\
\Leftrightarrow \left( {x - 1} \right)\left( {{x^3} - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 1 = 0\\
{x^3} - 1 = 0 
\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}
x = 1 \\
{x^3} = 1
\end{array} \right. \\\Leftrightarrow x = 1
\end{array}\)

Kiểm tra kết quả: Giá trị \(x=1\) thỏa mãn điều kiên xác định.

Kết luận: Vậy phương trình có nghiệm duy nhất \(x = 1\).


LG d

 \( \dfrac{x+3}{x+1}+\dfrac{x-2}{x} = 2\). 

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Điều kiện xác định: \(x+1\ne 0;x\ne 0\), tức là \(x \ne 0; x\ne-1\).

Quy đồng mẫu thức: 

\(\dfrac{{x\left( {x + 3} \right)}}{{x\left( {x + 1} \right)}} + \dfrac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\)\(\, = \dfrac{{2x\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\)

Khử mẫu thức, ta được phương trình: 

\(x\left( {x + 3} \right) + \left( {x - 2} \right)\left( {x + 1} \right) \)\(\,= 2x\left( {x + 1} \right)\)  (2)

Giải phương trình (2):

\(\Leftrightarrow {x^2} + 3{\rm{x}} + {x^2} - 2{\rm{x}} + x - 2 \)\(\,= 2{{\rm{x}}^2} + 2{\rm{x}}\)

\(\Leftrightarrow 2{{\rm{x}}^2} + 2{\rm{x}} - 2\, - 2{{\rm{x}}^2} - 2{\rm{x}} = 0\)

\(\Leftrightarrow 0x = 2\) (vô nghiệm).

Kết luận: Vậy phương trình đã cho vô nghiệm. 

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.