Bài 21 trang 66 Vở bài tập toán 8 tập 1
Bài làm:
Làm tính cộng các phân thức sau:
LG a
\(\dfrac{5}{{2{x^2}y}} + \dfrac{3}{{5x{y^2}}} + \dfrac{x}{{{y^3}}}\)
Phương pháp giải:
Áp dụng
- Quy tắc đổi dấu
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Giải chi tiết:
\(\eqalign{
& a)\,\,MTC = 10{x^2}{y^3} \cr
& {5 \over {2{x^2}y}} + {3 \over {5x{y^2}}} + {x \over {{y^3}}} \cr
& = {{5.5{y^2} + 3.2xy + x.10{x^2}} \over {10{x^2}{y^3}}} \cr
& = {{25{y^2} + 6xy + 10{x^3}} \over {10{x^2}{y^3}}} \cr} \)
LG b
\(\dfrac{{x + 1}}{{2x + 6}} + \dfrac{{2x + 3}}{{x\left( {x + 3} \right)}}\)
Phương pháp giải:
Áp dụng
- Quy tắc đổi dấu
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Giải chi tiết:
Thực hiện tương tự như các bài tập trên.
Ta có: \(2x+6=2(x+3)\)
MTC \(=2x(x+3)\)
\(\eqalign{
& {{x + 1} \over {2x + 6}} + {{2x + 3} \over {x\left( {x + 3} \right)}} \cr
& = {{x\left( {x + 1} \right) + 2\left( {2x + 3} \right)} \over {2x\left( {x + 3} \right)}} \cr
& = {{{x^2} + x + 4x + 6} \over {2x\left( {x + 3} \right)}} \cr
& = {{{x^2} + 5x + 6} \over {2x\left( {x + 3} \right)}} \cr
& = {{{x^2} + 2x + 3x + 6} \over {2x\left( {x + 3} \right)}} \cr
& = {{x\left( {x + 2} \right) + 3\left( {x + 2} \right)} \over {2x\left( {x + 3} \right)}} \cr
& = {{\left( {x + 2} \right)\left( {x + 3} \right)} \over {2x\left( {x + 3} \right)}} = {{x + 2} \over {2x}} \cr} \)
LG c
\(\dfrac{{3x + 5}}{{{x^2} - 5x}} + \dfrac{{25 - x}}{{25 - 5x}}\)
Phương pháp giải:
Áp dụng
- Quy tắc đổi dấu
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Giải chi tiết:
(Đổi dấu ở mỗi hạng tử để dễ quy đồng mẫu thức)
+) Tìm MTC:
\(\eqalign{
& {x^2} - 5x = x\left( {x - 5} \right) \cr
& 25 - 5x = 5\left( {5 - x} \right) = - 5\left( {x - 5} \right) \cr} \)
MTC \(=5x\left( {x - 5} \right)\)
+) Thực hiện phép tính:
\(\eqalign{
& {{3x + 5} \over {{x^2} - 5x}} + {{25 - x} \over {25 - 5x}} \cr
& = {{3x + 5} \over {{x^2} - 5x}} + {{ - \left( {25 - x} \right)} \over { - \left( {25 - 5x} \right)}}\cr& = {{3x + 5} \over {{x^2} - 5x}} + {{x - 25} \over {5x - 25}} \cr
& = {{3x + 5} \over {x\left( {x - 5} \right)}} + {{x - 25} \over {5\left( {x - 5} \right)}} \cr
& = {{5\left( {3x + 5} \right) + x\left( {x - 25} \right)} \over {5x\left( {x - 5} \right)}}\cr
& = {{15x + 25 + {x^2} - 25x} \over {5x\left( {x - 5} \right)}} \cr
& = {{{x^2} - 10x + 25} \over {5x\left( {x - 5} \right)}} \cr
& = {{{{\left( {x - 5} \right)}^2}} \over {5x\left( {x - 5} \right)}} = {{x - 5} \over {5x}} \cr} \)
Giải thích:
\({x^2} - 10x + 25 = {x^2} - 2.x.5 + {5^2}\)\( = {\left( {x - 5} \right)^2}\)
LG d
\({x^2} + \dfrac{{{x^4} + 1}}{{1 - {x^2}}} + 1\)
Phương pháp giải:
Áp dụng
- Quy tắc đổi dấu
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Giải chi tiết:
MTC \(= 1 - {x^2}\)
Nhờ tính chất giao hoán của phép cộng có thể viết
\(\eqalign{
& {x^2} + {{{x^4} + 1} \over {1 - {x^2}}} + 1= 1 + {{\rm{x}}^2} + {{{x^4} + 1} \over {1 - {x^2}}} \cr
& = {{\left( {1 + {x^2}} \right)\left( {1 - {x^2}} \right)} \over {1 - {x^2}}} + {{{x^4} + 1} \over {1 - {x^2}}} \cr
& = {{1 - {x^4} + {x^4} + 1} \over {1 - {x^2}}} = {2 \over {1 - {x^2}}} \cr} \)
LG e
\(\dfrac{{4{x^2} - 3x + 17}}{{{x^3} - 1}} + \dfrac{{2x - 1}}{{{x^2} + x + 1}} \)\(+ \dfrac{6}{{1 - x}}\)
Phương pháp giải:
Áp dụng
- Quy tắc đổi dấu
\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)
- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)
Giải chi tiết:
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 5. Phép cộng các phân thức đại số
Xem thêm lời giải Vở bài tập Toán 8
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 2
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc
Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 8
- Tài liệu Dạy - học Toán 8
- SBT Toán lớp 8
- Vở bài tập Toán 8
- SGK Toán lớp 8
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 8
- Tài liệu Dạy - học Hóa học 8
- SBT Hóa lớp 8
- SGK Hóa lớp 8
- Giải môn Hóa học lớp 8
Ngữ Văn
- Đề thi, đề kiểm tra Văn 8
- SBT Ngữ văn lớp 8
- Tác giả - Tác phẩm văn 8
- Văn mẫu lớp 8
- Vở bài tập Ngữ văn lớp 8
- Soạn văn 8 chi tiết
- Soạn văn 8 ngắn gọn
- Soạn văn 8 siêu ngắn
- Bài soạn văn lớp 8 siêu ngắn
- Bài soạn văn 8
- Bài văn mẫu 8
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 8
- SBT Sinh lớp 8
- Vở bài tập Sinh học 8
- SGK Sinh lớp 8
- Giải môn Sinh học lớp 8
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 8 mới
- SGK Tiếng Anh lớp 8
- SBT Tiếng Anh lớp 8 mới
- Vở bài tập Tiếng Anh 8
- SGK Tiếng Anh lớp 8 Mới