Bài 22 trang 61 Vở bài tập toán 9 tập 2

Giải Bài 22 trang 61 VBT toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau...

Bài làm:

Tìm hai số u và v trong mỗi trường hợp sau:

LG a

\(u + v = 32,\,\,uv = 231\)

Phương pháp giải:

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu.

Lời giải chi tiết:

\(u\) và \(v\) là nghiệm của phương trình \({x^2} - 32x + 231 = 0\,\)

Giải phương trình

\(\Delta ' = {\left( { - 16} \right)^2} - 1.231 = 25\)\( \Rightarrow \sqrt {\Delta '}  = 5\)

\({x_1} = \dfrac{{ - \left( { - 16} \right) + 5}}{1} = 21;\)\({x_2} = \dfrac{{ - \left( { - 16} \right) - 5}}{1} = 11\)

Vậy \(u = 21;v = 11\) hoặc \(u = 11;v = 21.\)


LG b

\(u + v =  - 8,\,\,uv =  - 105\)

Phương pháp giải:

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu.

Lời giải chi tiết:

\(u\) và \(v\) là nghiệm của phương trình \({x^2} + 8x - 105 = 0\,\)

\(\Delta ' = {4^2} - 1.\left( { - 105} \right) = 121\)\( \Rightarrow \sqrt {\Delta '}  = 11\)

\({x_1} = \dfrac{{ - 4 + 11}}{1} = 7;\)\({x_2} = \dfrac{{ - 4 - 11}}{1} =  - 15\)

Vậy \(u = 7;v =  - 15\) hoặc \(u =  - 15;v = 7.\)


LG c

\(u + v = 2,\,\,uv = 9\)

Phương pháp giải:

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu.

Lời giải chi tiết:

\(u\) và \(v\) là nghiệm của phương trình \({x^2} - 2x + 9 = 0\,\)

Ta có \(\Delta ' = {\left( { - 1} \right)^2} - 1.9 =  - 8 < 0\)

Suy ra phương trình vô nghiệm hay không có \(u\) và \(v\) thỏa mãn đề bài. 

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 9

Giải VBT toán 9 tập 1, tập 2 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.