Bài 2.3 phần bài tập bổ sung trang 26 SBT toán 8 tập 1

Giải bài 2.3 phần bài tập bổ sung trang 26 sách bài tập toán 8. Dùng tính chất cơ bản của phân thức chứng tỏ rằng các cặp phân thức sau bằng nhau ...

Bài làm:

Dùng tính chất cơ bản của phân thức chứng tỏ rằng các cặp phân thức sau bằng nhau:

LG a

\(\displaystyle {{{x^2} + 3x + 2} \over {3x + 6}}\) và \(\displaystyle {{2{x^2} + x - 1} \over {6x - 3}}\)

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Giải chi tiết:

\(\displaystyle {{{x^2} + 3x + 2} \over {3x + 6}}\)

\(\displaystyle = {{{x^2} + x + 2x + 2} \over {3\left( {x + 2} \right)}} \)

\(\displaystyle= {{x\left( {x + 1} \right) + 2\left( {x + 1} \right)} \over {3\left( {x + 2} \right)}}\)

\(\displaystyle= {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {3\left( {x + 2} \right)}} = {{x + 1} \over 3}\)

\(\displaystyle {{2{x^2} + x - 1} \over {6x - 3}}\)

\(\displaystyle  = {{2{x^2} + 2x - x - 1} \over {3\left( {2x - 1} \right)}} \)

\(\displaystyle = {{2x\left( {x + 1} \right) - \left( {x + 1} \right)} \over {3\left( {2x - 1} \right)}} \)

\(\displaystyle = {{\left( {x + 1} \right)\left( {2x - 1} \right)} \over {3\left( {2x - 1} \right)}} = {{x +1} \over 3}\)

Vậy \(\displaystyle {{{x^2} + 3x + 2} \over {3x + 6}}= {{2{x^2} + x - 1} \over {6x - 3}}\)


LG b

\(\displaystyle {{15x - 10} \over {3{x^2} + 3x - \left( {2x + 2} \right)}}\) và \(\displaystyle {{5{x^2} - 5x + 5} \over {{x^3} + 1}}\)

Phương pháp giải:

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Giải chi tiết:

\(\displaystyle {{15x - 10} \over {3{x^2} + 3x - \left( {2x + 2} \right)}}\)

\(\displaystyle  = {{5\left( {3x - 2} \right)} \over {3x\left( {x + 1} \right) - 2\left( {x + 1} \right)}}\)

\(\displaystyle = {{5\left( {3x - 2} \right)} \over {\left( {x + 1} \right)\left( {3x - 2} \right)}} = {5 \over {x + 1}}\)

\(\displaystyle {{5{x^2} - 5x + 5} \over {{x^3} + 1}}\) \(\displaystyle  = {{5\left( {{x^2} - x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)\(\,\displaystyle = {5 \over {x + 1}}\)

Vậy \(\displaystyle {{15x - 10} \over {3{x^2} + 3x - \left( {2x + 2} \right)}}\)\(\,\displaystyle = {{5{x^2} - 5x + 5} \over {{x^3} + 1}}\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 8

Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

CHƯƠNG 1: TỨ GIÁC

CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.