Bài 2.43 trang 65 SBT hình học 12

Giải bài 2.43 trang 65 sách bài tập hình học 12. Cho tam giác ABC vuông tại ...

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 2a\) và \(\widehat B = {30^0}\). Quay tam giác vuông này quanh trục \(AB\), ta được một hình nón đỉnh \(B\). Gọi \({S_1}\) là diện tích toàn phân của hình nón đó và \({S_2}\) là diện tích mặt cầu có đường kính \(AB\). Khi đó, tỉ số \(\dfrac{{{S_1}}}{{{S_2}}}\) là:

A. \(1\)                          B. \(\dfrac{1}{2}\)

C. \(\dfrac{2}{3}\)                      D. \(\dfrac{3}{2}\)

Phương pháp giải - Xem chi tiết

- Tính diện tích toàn phần hình nón \({S_{tp}} = {S_{xq}} + {S_d}\).

- Tính diện tích mặt cầu theo công thức \(S = 4\pi {r^2}\) và suy ra tỉ số.

Lời giải chi tiết

Tam giác \(ABC\) vuông tại \(A\) có \(AC = BC\sin {30^0} = a\); \(AB = BC\cos {30^0} = a\sqrt 3 \).

Diện tích toàn phần hình nón là:

\({S_1} = {S_{xq}} + {S_d}\) \( = \pi rl + \pi {r^2}\) \(=\pi AC.BC +\pi AC^2\) \( = \pi a.2a + \pi {a^2}\) \( = 2\pi {a^2} + \pi {a^2} = 3\pi {a^2}\)

Diện tích mặt cầu đường kính \(AB\) là:

\({S_2}  = 4\pi .{\left( {\frac{{AB}}{2}} \right)^2}= \pi A{B^2} \) \(= \pi {\left( {a\sqrt 3 } \right)^2} = 3\pi {a^2}\).

Vậy \(\dfrac{{{S_1}}}{{{S_2}}} = 1\).

Chọn A.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.