Bài 2.46 trang 66 SBT hình học 12

Giải bài 2.46 trang 66 sách bài tập hình học 12. Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy,...

Đề bài

Cho hình nón tròn xoay có đỉnh là \(S\), \(O\) là tâm của đường tròn đáy, đường sinh bằng \(a\sqrt 2 \) và góc giữa đường sinh và mặt phẳng đáy bằng \({60^0}\). Diện tích xung quanh \({S_{xq}}\) của hình nón và thể tích \(V\) của khối nón tương ứng là:

A. \({S_{xq}} = \pi {a^2},V = \dfrac{{\pi {a^3}\sqrt 6 }}{4}\)

B. \({S_{xq}} = \dfrac{{\pi {a^2}}}{2},V = \dfrac{{\pi {a^3}\sqrt 3 }}{{12}}\)

C. \({S_{xq}} = \pi {a^2}\sqrt 2 ,V = \dfrac{{\pi {a^3}\sqrt 6 }}{4}\)

D. \({S_{xq}} = \pi {a^2},V = \dfrac{{\pi {a^3}\sqrt 6 }}{{12}}\)

Phương pháp giải - Xem chi tiết

- Diện tích xung quanh \({S_{xq}} = \pi rl\).

- Thể tích \(V = \dfrac{1}{3}\pi {r^2}h\).

Lời giải chi tiết

Gọi \(A\) là một điểm thuộc đường tròn đáy của hình nón.

Đường sinh \(SA = a\sqrt 2 \), góc giữa đường sinh và mặt phẳng đáy \(\widehat {SAO} = {60^0}\).

Tam giác \(SAO\) vuông tại \(O\) có:

\(OA = SA\cos {60^0} = \dfrac{{a\sqrt 2 }}{2}\); \(SO = SA\sin {60^0}\) \( = a\sqrt 2 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{a\sqrt 6 }}{2}\)

Diện tích xung quanh hình nón: \({S_{xq}} = \pi rl = \pi .\dfrac{{a\sqrt 2 }}{2}.a\sqrt 2  = \pi {a^2}\).

Thể tích \(V = \dfrac{1}{3}\pi {r^2}h\) \( = \dfrac{1}{3}\pi .{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}.\dfrac{{a\sqrt 6 }}{2} = \dfrac{{\pi {a^3}\sqrt 6 }}{{12}}\).

Chọn D.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.