Bài 25 trang 123 SGK Toán 8 tập 1

Giải bài 25 trang 123 SGK Toán 8 tập 1. Tính diện tích của một tam giác đều có cạnh là a.

Đề bài

Tính diện tích của một tam giác đều có cạnh là \(a.\)

Phương pháp giải - Xem chi tiết

- Tam giác đều là tam giác có ba cạnh bằng nhau.

- Định lí Pytago: bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

- Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.

Lời giải chi tiết

Gọi \(h\) là chiều cao của tam giác đều cạnh \(a\)

Xét tam giác \(ABC\) đều cạnh \(a\), chiều cao \(AH=h\). Ta tính diện tích tam giác \(ABC\).

Vì tam giác \(ABC\) đều cạnh \(a\) có \(AH\) vừa là đường cao đồng thời là trung tuyến ứng với cạnh \(BC\) (tính chất tam giác đều).

Do đó \(H\) là trung điểm của \(BC\).

Hay \(BH = \dfrac{1}{2}BC = \dfrac{a}{2}\)

Áp dụng định lí Pitago vào tam giác vuông \(ABH\) ta có:

\(A{H^2} = A{B^2} - B{H^2}\)

\({h^2} = {a^2} - {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{3{a^2}}}{4}\)

\( \Rightarrow h = \dfrac{{a\sqrt 3 }}{2}\)

Vậy diện tích tam giác \(ABC\) là: 

\(S _{ABC}= \dfrac{1}{2}ah = \dfrac{1}{2}a.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Xemloigiai.com

Xem thêm lời giải SGK Toán lớp 8

Giải bài tập toán lớp 8 như là cuốn để học tốt Toán lớp 8. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 8. Giai toan 8 xem mục lục giai toan lop 8 sach giao khoa duoi day

PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

CHƯƠNG I. PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC

CHƯƠNG II. PHÂN THỨC ĐẠI SỐ

CHƯƠNG I. TỨ GIÁC

CHƯƠNG II. ĐA GIÁC, DIỆN TÍCH ĐA GIÁC

CHƯƠNG III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG IV. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG III. TAM GIÁC ĐỒNG DẠNG

CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM - TOÁN 8

Xem Thêm

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.