Bài 36 trang 80 Vở bài tập toán 8 tập 1

Giải bài 36 trang 80 VBT toán 8 tập 1. Biến đổi mỗi biểu thức sau thành một phân thức đại số: a) (1+1/x)/(1-1/x) ...

Bài làm:

Biến đổi mỗi biểu thức sau thành một phân thức đại số:

LG a

 \( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}\);   

Phương pháp giải:

Áp dụng quy tắc chia hai phân thức: 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Giải chi tiết:

Gọi biểu thức đã cho là \(A\), ta có:

\(A = \left( {1 + \dfrac{1}{x}} \right):\left( {1 - \dfrac{1}{x}} \right)\)

\(= \dfrac{x+1}{x}:\dfrac{x-1}{x}\)

\(=\dfrac{x+1}{x}.\dfrac{x}{x-1}=\dfrac{x+1}{x-1}\)


LG b

 \( \dfrac{1-\dfrac{2}{x+1}}{1-\dfrac{x^{2}-2}{x^{2}-1}}\). 

Phương pháp giải:

Áp dụng quy tắc chia hai phân thức: 

\( \dfrac{A}{B} :  \dfrac{C}{D} =   \dfrac{A}{B}.  \dfrac{D}{C}\) với \( \dfrac{C}{D} ≠ 0\).

Giải chi tiết:

Gọi biểu thức đã cho là \(B\), ta có:

\( B = \left( {1 - \dfrac{2}{{x + 1}}} \right):\left( {1 - \dfrac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\)

\( =\dfrac{x+1-2}{x+1}:\dfrac{x^{2}-1-(x^{2}-2)}{x^{2}-1}\)

\(=\dfrac{x-1}{x+1}:\dfrac{1}{(x-1)(x+1)}\)

\( =\dfrac{x-1}{x+1}.\dfrac{(x-1)(x+1)}{1}= (x-1)^{2}\).

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.