Bài 50 trang 130 Vở bài tập toán 8 tập 1

Giải bài 50 trang 130 vở bài tập toán 8 tập 1. Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của hình thoi.

Đề bài

Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của hình thoi.

Phương pháp giải - Xem chi tiết

Áp dụng dấu hiệu nhận biết hình thoi: Tứ giác có bốn cạnh bằng nhau là hình thoi.

Lời giải chi tiết

Xét hình chữ nhật \(ABCD\) có \(E,F,G,H\) lần lượt là trung điểm của \(AB,BC,CD,DA\)

Xét  \(∆AEH\) và \(∆BEF\) có:

\(AE = BE \) (vì \(E\) là trung điểm \(AB\))

\(\widehat A = \widehat B = {90^0}\)

\(AH = BF\) (vì \(AH = \dfrac{1}{2}AD \); \(BF= \dfrac{1}{2}BC\); \(AD=BC\) )

Do đó \(∆AEH=∆BEF\) (c.g.c), suy ra \(EH = EF \) (2 cạnh tương ứng)

Chứng minh tương tự ta có: \(EF=GF, GF=GH\).

Tứ giác \(EFGH\) có \(EH = EF= GF=GH\) nên là hình thoi (theo định nghĩa).

Chú ý:

Xét  \(∆HDG\) và \(∆FCG\) có:

\(H{\rm{D}} = FC\left( {cmt} \right)\) (vì \(HD = \dfrac{1}{2}AD \); \(FC= \dfrac{1}{2}BC\); \(AD=BC\) )

\(\widehat D = \widehat C = {90^0}\)

\(DG = CG\) (vì \(G\) là trung điểm \(DC\))

\( \Rightarrow \Delta HDG = \Delta FCG\left( {c - g - c} \right)\)

\( \Rightarrow \) \(GH = GF \) (2 cạnh tương ứng) 

Xét  \(∆AHE\) và \(∆DHG\) có:

\(H{\rm{A}} = HD\) (vì \(H\) là trung điểm \(AD\))

\(\widehat A = \widehat D = {90^0}\)

\(AE = DG\) (vì \(AE = \dfrac{1}{2}AB \); \(DG= \dfrac{1}{2}DC\); \(AB=DC\) )

\(\Rightarrow \Delta AHE = \Delta DHG\left( {c - g - c} \right)\)

\( \Rightarrow \) \(EH = GH \) (2 cạnh tương ứng) 

\( \Rightarrow  HE=EF = GH = GF\).

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.