Bài 56 trang 98 SBT toán 8 tập 2

Giải bài 56 trang 98 sách bài tập toán 8. Hai điểm M và K thứ tự nằm trên cạnh AB và BC của tam giác ABC; hai đoạn thẳng AK và CM cắt nhau tại điểm P...

Đề bài

Hai điểm \(M\) và \(K\) thứ tự nằm trên cạnh \(AB\) và \(BC\) của tam giác \(ABC\); hai đoạn thẳng \(AK\) và \(CM\) cắt nhau tại điểm \(P.\) Biết rằng \(AP = 2 PK\) và \(CP = 2PM.\)

Chứng minh rằng \(AK\) và \(CM\) là các trung tuyến của tam giác \(ABC.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác đồng dạng với tam giác đã cho.

Lời giải chi tiết

\(AP = 2 PK\) và \(CP = 2PM\) (gt)

\( \Rightarrow \displaystyle{{PK} \over {PA}} = {1 \over 2};{{PM} \over {PC}} = {1 \over 2}\)

\( \Rightarrow\displaystyle {{PK} \over {PA}} = {{PM} \over {PC}} = {1 \over 2}\)

Xét \(∆ PKM\) và \(∆ PAC\) có:

\(\displaystyle {{PK} \over {PA}} = {{PM} \over {PC}}\) (chứng minh trên)

\(\widehat {APC} = \widehat {KPM}\) (đối đỉnh)

\( \Rightarrow ∆ PKM\) đồng dạng \(∆ PAC\) (c.g.c) với tỉ số đồng dạng \(k =\displaystyle {{PK} \over {PA}}= {1 \over 2}\).

\( \Rightarrow\displaystyle {{KM} \over {AC}} = {1 \over 2}\)                          (1)

Vì \(∆ PKM\) đồng dạng \(∆ PAC\) suy ra \(\widehat {PKM} = \widehat {PAC}\)

Mà \(\widehat {PKM} \) và \( \widehat {PAC}\) ở vị trí so le trong nên \( KM // AC\) (vì có cặp góc ở vị trí so le trong bằng nhau).

Trong tam giác \(ABC\) có \(KM // AC\) nên \(\widehat {BMK} = \widehat {BAC}\) (hai góc đồng vị)

Lại có góc \(B\) chung nên \( ∆ BMK\) đồng dạng \(∆ BAC\) (g.g)

\( \Rightarrow\displaystyle  {{BM} \over {BA}} = {{BK} \over {BC}} = {{MK} \over {AC}}\)     (2)

Từ (1) và (2) suy ra: \(\displaystyle {{BM} \over {BA}} = {{BK} \over {BC}} = {1 \over 2}\)

Do đó \(BM = \displaystyle {1 \over 2} BA\) nên \(M\) là trung điểm của \(AB\).

\(BK =\displaystyle  {1 \over 2} BC\) nên \(K\) là trung điểm của \(BC\).

Vậy \(AK\) và \(CM\) là đường trung tuyến của tam giác \(ABC.\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 8

Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

CHƯƠNG 1: TỨ GIÁC

CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.