Bài 57 trang 38 SBT toán 8 tập 1

Giải bài 57 trang 38 sách bài tập toán 8. Tìm giá trị nguyên của biến x để tại đó giá trị của mỗi biểu thức sau là một số nguyên ...

Bài làm:

Tìm giá trị nguyên của biến \(x\) để tại đó giá trị của mỗi biểu thức sau là một số nguyên :

LG a

\(\displaystyle {2 \over {x - 3}}\) 

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

\(\displaystyle {2 \over {x - 3}}\) là một số nguyên nên \(2 \vdots \left( {x - 3} \right)\) và \(x \ne 3\)

\(\Rightarrow x – 3 ∈ Ư(2) = \{ - 2; -1 ; 1; 2 \}\) 

   \(\eqalign{& x - 3 =  - 2 \Rightarrow x = 1 (tm)  \cr & x - 3 =  - 1 \Rightarrow x = 2(tm)  \cr  & x - 3 = 1 \Rightarrow x = 4 (tm) \cr  & x - 3 = 2 \Rightarrow x = 5(tm) \cr} \)

Vậy với \(x ∈ \{ 1; 2; 4; 5 \}\) thì \(\displaystyle {2 \over {x - 3}}\) là một số nguyên.


LG b

\(\displaystyle {3 \over {x + 2}}\)

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

\(\displaystyle {3 \over {x + 2}}\) là một số nguyên nên \(3 \vdots (x + 2)\) và \(x ≠ - 2\)

\(\Rightarrow x + 2 ∈ Ư(3) = \{ -3; -1; 1; 3 \}\)

    \(\eqalign{  & x + 2 =  - 3 \Rightarrow x =  - 5 (tm) \cr  & x + 2 =  - 1 \Rightarrow x =  - 3 (tm) \cr  & x + 2 = 1 \Rightarrow x =  - 1(tm)  \cr  & x + 2 = 3 \Rightarrow x = 1(tm) \cr} \) 

Vậy với \(x ∈ \{ -5; -3; -1; 1 \}\) thì \(\displaystyle {3 \over {x + 2}}\) là một số nguyên


LG c

\(\displaystyle {{3{x^3} - 4{x^2} + x - 1} \over {x - 4}}\)

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

Đặt phép tính chia: 

Từ phép chia trên ta có:

\(\displaystyle {{3{x^3} - 4{x^2} + x - 1} \over {x - 4}}\)\(\displaystyle  = {{\left( {3{x^2} + 8x + 33} \right)\left( {x - 4} \right) + 131} \over {x - 4}}\)\(\displaystyle  = 3{x^2} + 8x + 33 + {{131} \over {x - 4}}\)

Với \(x\) là số nguyên ta có : \(3{x^2} + 8x + 33\) là số nguyên

Vậy muốn biểu thức là số nguyên thì \(131 \vdots (x – 4 )\) và \(x ≠ 4\)

\(\Rightarrow x – 4 ∈ Ư(131) = \{-131; -1; 1;\)\( 131\}\)

  \(\eqalign{ & x - 4 =  - 131 \Rightarrow x =  - 127(tm)  \cr  & x - 4 =  - 1 \Rightarrow x = 3 (tm) \cr  & x - 4 = 1 \Rightarrow x = 5  (tm)\cr  & x - 4 = 131 \Rightarrow x = 135(tm) \cr} \)

Vậy \(x ∈ \{-127; 3; 5; 135\}\) thì \(\displaystyle {{3{x^3} - 4{x^2} + x - 1} \over {x - 4}}\) là số nguyên


LG d

\(\displaystyle {{3{x^2} - x + 1} \over {3x + 2}}\)

Phương pháp giải:

- Tìm điều kiện xác định của các phân thức. 

- Biến đổi biểu thức về dạng đơn giản.

- Để phân thức có giá trị là một số nguyên thì tử thức phải chia hết cho mẫu thức.

- Vận dụng kiến thức về ước đã học, tìm giá trị của \(x\).

Lời giải chi tiết:

Ta có: 

\(\displaystyle {{3{x^2} - x + 1} \over {3x + 2}}\)

\(\begin{array}{l}
= \dfrac{{3{x^2} + 2x - 3x - 2 + 3}}{{3x + 2}}\\
= \dfrac{{x\left( {3x + 2} \right) - \left( {3x + 2} \right) + 3}}{{3x + 2}}
\end{array}\)

\(\displaystyle  = {{\left( {3x + 2} \right)\left( {x - 1} \right) + 3} \over {3x + 2}}\)\(\displaystyle  = x - 1 + {3 \over {3x + 2}}\) (với \(x \ne \displaystyle  - {3 \over 2}\) )

\(x\) là số nguyên nên \(x – 1\) là số nguyên.

Vậy muốn biểu thức đã cho là số nguyên thì \(3 ⋮ (3x + 2)\) và \(x \ne  \displaystyle - {3 \over 2}\)

\(3x + 2 ∈ Ư(3) = \{-3; -1; 1; 3 \}\)

\(3x + 2 =  - 3 \Rightarrow x =  \displaystyle - {5 \over 3}\) (loại)

\(3x + 2 =  - 1 \Rightarrow x =  - 1(tm)\)

\(3x + 2 = 1 \Rightarrow x = \displaystyle  - {1 \over 3} \) (loại)

\(3x + 2 = 3 \Rightarrow x = \displaystyle {1 \over 3} \) (loại)

Vậy với \(x = - 1\) thì biểu thức \(\displaystyle {{3{x^2} - x + 1} \over {3x + 2}}\) có giá trị nguyên.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 8

Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

CHƯƠNG 1: TỨ GIÁC

CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.