Bài 9 trang 98 Vở bài tập toán 8 tập 1

Giải bài 9 trang 98 VBT toán 8 tập 1. Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D và E sao cho AD = AE...

Đề bài

Cho \(\Delta ABC\) cân tại \(A.\) Trên các cạnh bên \(AB, AC\) lấy theo thứ tự các điểm \(D\) và \(E\) sao cho \(AD = AE.\)

a) Chứng minh rằng \(BDEC\) là hình thang cân. 

b) Tính các góc của hình thang cân đó, biết rằng \(\widehat{A}=50^o\).

Phương pháp giải - Xem chi tiết

Sử dụng: 

- Hình thang là tứ giác có hai cạnh đối song song.

- Hình thang cân là hình thang có hai góc kề với một đáy bằng nhau.

- Định lí tổng ba góc của một tam giác bằng \(180^o\).

- Tam giác cân có hai cạnh bên bằng nhau, hai góc đáy bằng nhau.

Lời giải chi tiết

a) Tam giác \(ABC\) cân nên ta có \(\widehat B = \widehat C =({180}^0 - \widehat A):2\)  (1)

Tam giác \(ADE\) có \(AD =  AE\) nên là tam giác cân,

suy ra \( \widehat{D_{1}}= \widehat{E_{1}}=({180}^0 - \widehat A):2\)  (2)

Từ (1) và (2) suy ra \(\widehat B=\widehat{D_{1}}\), hai góc này ở vị trí đồng vị nên \(DE//BC\)

Vậy \(BDEC\) là hình thang, lại có hai góc kề một đáy bằng nhau nên là hình thang cân.

b) Ta có \(\widehat{A}=50^o\) nên \(\widehat{B} = \widehat{C} = \dfrac{180^{0}-50^{0}}{2} = 65^o\)

\( \widehat {{D_2}} = \widehat {{E_2}}= {180^0} - \widehat B \)\(= {180^0} - {65^0}= {115^0}\) (vì \( \widehat {{D_2}}\) và \(\widehat B\) trong cùng phía)

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.