Đề kiểm tra 15 phút – Chương 1 – Đề số 10 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 1 – Đề số 10 – Đại số và giải tích 11

Đề bài

Câu 1: Giá trị lớn nhất của hàm số \(y = 8\sin x + 6\cos x\) là

A. 8                            B. 6

C. 10                           D. 14

Câu 2: Tập xác định của hàm số \(y\,\, = \,\,\dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}\) là

A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi } \right\},k \in \mathbb{Z}\)

B. \(\mathbb{R}\backslash \left\{ {k2\pi } \right\},k \in \mathbb{Z}\)

C. \(\mathbb{R}\backslash \left\{ {k\dfrac{\pi }{2}} \right\},k \in \mathbb{Z}\)

D. \(\mathbb{R}\backslash \left\{ {k\pi } \right\},k \in \mathbb{Z}\)

Câu 3: Số nghiệm trong khoảng \(\left( { - \pi ;5\pi } \right)\) của phương trình \(\left( {\sin x + \dfrac{1}{{\sqrt 3 }}} \right)\cos x = 0\) là

A. 6                            B. 8

C. 10                           D. 12

Câu 4 : Tập giá trị của hàm số \(y = 3\sin x + 4\cos x + 1\) là

A. [-2;6]                      B. [-4;4]

C. [-4;6]                      D. [-1;6]

Câu 5 : Cho \(x \in {\rm{[}}0;\pi {\rm{]}}\), biểu thức rút gọn của \(\sqrt {2 + \sqrt {2 + 2\cos x} } \) là:

A. \(2\cos \dfrac{x}{4}\)

B. \(2{\mathop{\rm s}\nolimits} {\rm{in}}\dfrac{x}{4}\)

C. -\(2{\mathop{\rm s}\nolimits} {\rm{in}}\dfrac{x}{4}\)

D. \( - 2\cos \dfrac{x}{4}\)

Câu 6: Tập xác định của hàm số \(y\,\, = \,\,\sin \sqrt {\dfrac{{1 + x}}{{1 - x}}} \) là:

A. \(\left( { - \infty ;1} \right)\)           B. \(( - 1;1]\)

C. \({\rm{[}} - 1;1)\)               D. \(( - \infty ; - 1)\)

Câu 7: Trong các phương trình sau, phương trình nào vô nghiệm:

A. \(3\sin x + 1 = 0\)

B. \(\cos x = \dfrac{\pi }{3}\)

C. \(2\sin x{\rm{ = }}\dfrac{3}{2}\)

D. \(\sqrt 3 \sin x + \cos x = 1\)

Câu 8: Phương trình \(2{\sin ^2}x + m\sin 2x = 2m\) vô nghiệm khi:

A. \(m \in \left[ {0;\dfrac{4}{3}} \right]\)

B. \(m \le 0;m \ge \dfrac{4}{3}\)

C. \(0 < m < \dfrac{4}{3}\)

D. \(m < 0;m > \dfrac{4}{3}\)

Câu 9: Nghiệm của phương trình \({\cos ^2}x - \cos x = 0,0 < x < \pi \) là:

A. \(\dfrac{{ - \pi }}{2}\)

B. \(\dfrac{\pi }{4}\)

C. \(\dfrac{\pi }{6}\)

D. \(\dfrac{\pi }{2}\)

Câu 10: Nghiệm dương nhỏ nhất của phương trình : \(\sin x + \sin 2x = \cos x + 2{\cos ^2}x\) là:

A. \(\dfrac{\pi }{6}\)

B. \(\dfrac{\pi }{4}\)

C. \(\dfrac{{2\pi }}{3}\)

D. \(\dfrac{\pi }{3}\)

Lời giải chi tiết

1C

2C

3D

4C

5A

6C

7B

8D

9A

10B

Câu 1:

Ta có \( - \sqrt {{8^2} + {6^2}}  \le 8\sin x + 6\cos x \le \sqrt {{8^2} + {6^2}} \)

\(\Rightarrow  - 10 \le y \le 10\)

Chọn C.

Câu 2:

ĐK: \(\left\{ {\begin{array}{*{20}{c}}{\sin x \ne 0}\\{\cos x \ne 0}\end{array}}\right.  \Leftrightarrow \sin 2x \ne 0 \\ \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne \dfrac{{k\pi }}{2} \)

Chọn C

Câu 3:

\(\begin{array}{l}
\left( {\sin x + \frac{1}{{\sqrt 3 }}} \right)\cos x = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x + \frac{1}{{\sqrt 3 }} = 0\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = - \frac{1}{{\sqrt 3 }}\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = \pi - \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = \frac{\pi }{2} + k\pi
\end{array} \right.
\end{array}\)

Với \(x = \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \) thì:

\(\begin{array}{l}
- \pi < \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi < 5\pi \\
\Leftrightarrow - 0,4 < k < 2,59\\
\Rightarrow k \in \left\{ {0;1;2} \right\}
\end{array}\)

Với \(x = \pi  - \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \) thì:

\(\begin{array}{l}
- \pi < \pi - \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi < 5\pi \\
\Leftrightarrow - 1,1 < k < 1,9\\
\Rightarrow k \in \left\{ { - 1;0;1} \right\}
\end{array}\)

Với \(x = \frac{\pi }{2} + k\pi \) thì:

\(\begin{array}{l}
- \pi < \frac{\pi }{2} + k\pi < 5\pi \\
\Leftrightarrow - \frac{3}{2} < k < \frac{9}{2}\\
\Rightarrow k \in \left\{ { - 1;0;1;2;3;4} \right\}
\end{array}\)

Vậy có tất cả 3+3+6=12 nghiệm thỏa mãn.

Chọn D.

Câu 4:

\( - \sqrt {{3^2} + {4^2}}  \le 3\sin x + 4\cos x \le \sqrt {{3^2} + {4^2}}  \) \(\Rightarrow  - 5 \le 3\sin x + 4\cos x \le 5 \) \(\Leftrightarrow  - 4 \le 3\sin x + 4\cos x + 1 \le 6\)

Chọn C.

Câu 5:

\(\sqrt {2 + \sqrt {2 + 2\cos x} }  \)\(= \sqrt {2 + \sqrt {2 + 2\left( {2{{\cos }^2}\dfrac{x}{2} - 1} \right)} }  \)\(= \sqrt {2 + \sqrt {4{{\cos }^2}\dfrac{x}{2}} }  \)\(= \sqrt {2 + 2\left| {\cos \dfrac{x}{2}} \right|} \)

Vì \(x \in \left[ {0;\pi } \right]\) nên \(\dfrac{x}{2} \in \left[ {0;\dfrac{\pi }{2}} \right]\) \(\Rightarrow \cos \dfrac{x}{2} \ge 0\).

Do đó

\(\sqrt {2 + \sqrt {2 + 2\cos x} } \)\( = \sqrt {2 + 2\cos \dfrac{x}{2}}\)\(  = \sqrt {2 + 2\left( {2{{\cos }^2}\dfrac{x}{4} - 1} \right)}  \) \(= \sqrt {4{{\cos }^2}\dfrac{x}{4}}  \) \(= \left| {2\cos \dfrac{x}{4}} \right| = 2\cos \dfrac{x}{4}\)

(vì \(x \in \left[ {0;\pi } \right]\) nên \(\dfrac{x}{4} \in \left[ {0;\dfrac{\pi }{4}} \right] \) \(\Rightarrow \cos \dfrac{x}{4} > 0\))

Chọn A

Câu 6:

ĐK: \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{{1 + x}}{{1 - x}} \ge 0}\\{1 - x \ne 0}\end{array} \Leftrightarrow x \in {\rm{[}} - 1;1)} \right.\)

Chọn C.

Câu 7:

Do \(\left| {\dfrac{\pi }{3}} \right| > 1 \Rightarrow \cos x = \dfrac{\pi }{3}\) vô nghiệm.

Chọn B

Câu 8:

\(2{\sin ^2}x + m\sin 2x = 2m \) \(\Leftrightarrow 2.\dfrac{{1 - \cos 2x}}{2} + m\sin 2x = 2m\) \( \Leftrightarrow m\sin 2x - \cos 2x = 2m - 1\,\,\,(1)\)

Để phương trình đã cho vô nghiệm khi và chỉ khi phương trình (1) vô nghiệm

\( \Leftrightarrow {m^2} + 1 < {\left( {2m - 1} \right)^2} \) \(\Leftrightarrow {m^2} + 1 < 4{m^2} - 4m + 1 \) \(\Leftrightarrow 3{m^3} - 4m > 0 \) \(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m < 0}\\{m > \dfrac{4}{3}}\end{array}} \right.\)

Chọn D.

Câu 9:

\({\cos ^2}x - \cos x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\cos x = 1}\end{array}} \right. \)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{\pi }{2} + k\pi }\\{x = k2\pi }\end{array}} \right.\)

Do \(x \in (0;\pi )\) nên \(x = \dfrac{\pi }{2}\)

Chọn D.

Câu 10:

\(\begin{array}{l}
\sin x + \sin 2x = \cos x + 2{\cos ^2}x\\
\Leftrightarrow \sin x + 2\sin x\cos x = \cos x + 2{\cos ^2}x\\
\Leftrightarrow \sin x\left( {1 + 2\cos x} \right) = \cos x\left( {1 + 2\cos x} \right)\\
\Leftrightarrow \sin x\left( {1 + 2\cos x} \right) - \cos x\left( {1 + 2\cos x} \right) = 0\\
\Leftrightarrow \left( {1 + 2\cos x} \right)\left( {\sin x - \cos x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
1 + 2\cos x = 0\\
\sin x - \cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = - \frac{1}{2}\\
\sin x = \cos x
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\cos x = - \frac{1}{2}\\
\tan x = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \pm \frac{{2\pi }}{3} + k2\pi \\
x = \frac{\pi }{4} + k2\pi
\end{array} \right.
\end{array}\)

Nghiệm dương nhỏ nhất của họ nghiệm \(x=\frac{{2\pi }}{3} + k2\pi \) là \(x=\frac{{2\pi }}{3} \).

Nghiệm dương nhỏ nhất của họ nghiệm \(x=-\frac{{2\pi }}{3} + k2\pi \) là \(x=\frac{{4\pi }}{3} \).

Nghiệm dương nhỏ nhất của họ nghiệm \(x=\frac{{\pi }}{4} + k2\pi \) là \(x=\frac{{\pi }}{4} \).

So sánh ba nghiệm trên ta thấy nghiệm nhỏ nhất là \(x=\frac{{\pi }}{4} \).

Chọn B

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.