Đề kiểm tra 15 phút - Đề số 3 - Chương 4 - Đại số và Giải tích 11
Đề bài
Câu 1: Cho hai dãy số thỏa mãn với mọi và thì:
Câu 2: Trong các giới hạn sau, giới hạn nào bằng -1?
Câu 3: Chọn kết quả đúng: \(\lim \dfrac{{\dfrac{{ - 1}}{3}\sqrt n + 2n}}{{3n}}\) bằng
A. \(\dfrac{{ - 1}}{9}\) B. \(\dfrac{2}{3}\)
C. \( - \infty \) D. Kết quả khác
Câu 4: Cấp số nhân lùi vô hạn\(({u_n})\) có \({u_1} = - 1;q = x;\left| x \right| < 1\). Tìm tổng S và ba số hạng đầu của cấp số này
A. \(S = \dfrac{{ - 1}}{{1 + x}}\)và \( - 1;x; - {x^2}\)
B. \(S = \dfrac{{ - 1}}{{1 + x}}\)và \(1;x;{x^2}\)
C. \(S = \dfrac{{ - 1}}{{1 - x}}\)và \( - 1; - x; - {x^2}\)
D. \(S = \dfrac{{ - 1}}{{1 - x}}\)và \( - 1;x; - {x^2}\)
Câu 5: Tính \(\lim (\sqrt n - \sqrt {n + 1} )\)
A.Không có giới hạn khi \(n \to + \infty \)
B. 0
C. -1
D. Kết quả khác
Câu 6: Chọn kết quả đúng:
A. \(\lim \sqrt {\dfrac{{2n - 7}}{n}} = + \infty \)
B. \(\lim \sqrt {\dfrac{2}{n}} = \sqrt 2 \)
C. \(\lim \sqrt {\dfrac{{2{n^2}}}{{n + 1}}} = \sqrt 2 \)
D. \(\lim \sqrt {\dfrac{{n - 7}}{{2n}}} = \dfrac{{\sqrt 2 }}{2}\)
Câu 7: Tìm \(\lim \sqrt {\dfrac{{7 - 2n}}{{4n + 5}}} \)
A. \(\sqrt {\dfrac{1}{2}} \)
B. \( - \infty \)
C. 0
D. Không có giới hạn khi \(n \to + \infty \)
Câu 8: Giá trị của \(\lim \dfrac{{\sqrt {{n^2} + 1} - \sqrt[3]{{3{n^3} + 2}}}}{{\sqrt[4]{{2{n^4} + n + 2}} - n}}\) bằng
A. \( + \infty \)
B. \( - \infty \)
C. \(\dfrac{{1 - \sqrt[3]{3}}}{{\sqrt[4]{2} - 1}}\)
D. 1
Câu 9: Giới hạn bằng?
A. 0 B. \(\frac{{ - 1}}{2}\)
C. \(\frac{{ - 1}}{{\sqrt 2 }}\) D. \(\frac{1}{{\sqrt 2 }}\)
Câu 10: Kết quả nào sau đây là đúng?
A. Cấp số nhân lùi vô hạn \(({u_n})\)có công bội q thì tổng \(S = \dfrac{u}{{1 - q}}\)
B. Cấp số nhân lùi vô hạn \(({u_n})\)có \({u_1} = 4;q = \dfrac{4}{3}\) thì tổng \(S = - 12\)
C. Cấp số nhân lùi vô hạn \(({u_n})\)có \({u_1} = 15;S = 60\) thì \(q = \dfrac{3}{4}\)
D. Cấp số nhân lùi vô hạn \(({u_n})\)có \({u_1} = - 4;q = - \dfrac{5}{4}\) thì tổng \(S = - 169\)
Lời giải chi tiết
Câu |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Đáp án |
A |
B |
B |
C |
B |
D |
D |
C |
B |
C |
Câu 1: Đáp án A
Hai dãy số thỏa mãn với mọi và thì:
Câu 2: Đáp án B
Thử lần lượt các đáp án
Đáp án A: \(\lim \dfrac{{2{n^2} - 3}}{{ - 2{n^3} - 4}} = \lim \dfrac{{\dfrac{2}{n} - \dfrac{3}{{{n^3}}}}}{{ - 2 - \dfrac{4}{{{n^3}}}}} = \dfrac{0}{{ - 2}} = 0\)
Đáp án B: \(\lim \dfrac{{2{n^2} - 3}}{{ - 2{n^2} - 1}} = \lim \dfrac{{2 - \dfrac{3}{{{n^2}}}}}{{ - 2 - \dfrac{1}{{{n^2}}}}} = \dfrac{2}{{ - 2}} = - 1\)
Câu 3: Đáp án B
\(\lim \dfrac{{\dfrac{{ - 1}}{3}\sqrt n + 2n}}{{3n}} = \lim \dfrac{{\dfrac{{ - 1}}{3}\sqrt {\dfrac{1}{n}} + 2}}{3} = \dfrac{2}{3}\)
Câu 4: Đáp án C
Cấp số nhân lùi vô hạn\(({u_n})\) có \({u_1} = - 1;q = x;\left| x \right| < 1\). Tổng S và ba số hạng đầu của cấp số này là: \(S = \dfrac{{ - 1}}{{1 - x}}\)và \( - 1; - x; - {x^2}\)
Câu 5: Đáp án B
\(\lim (\sqrt n - \sqrt {n + 1} ) = \lim \left( {\dfrac{{ - 1}}{{\sqrt n + \sqrt {n + 1} }}} \right) = 0\)
Câu 6: Đáp án D
\(\lim \sqrt {\dfrac{{2n - 7}}{n}} = \lim \sqrt {2 - \dfrac{7}{n} = } \sqrt 2 \)nên A sai
\(\lim \sqrt {\dfrac{2}{n}} = 0\)nên B sai
\(\lim \sqrt {\dfrac{{2{n^2}}}{{n + 1}}} = \lim \sqrt {\dfrac{{2n}}{{1 + \dfrac{1}{n}}}} = + \infty \)nên C sai
\(\lim \sqrt {\dfrac{{n - 7}}{{2n}}} = \lim \sqrt {\dfrac{{1 - \dfrac{7}{n}}}{2}} = \sqrt {\dfrac{1}{2}} = \dfrac{{\sqrt 2 }}{2}\)nên D đúng
Câu 7: Đáp án D
\(\lim \sqrt {\dfrac{{7 - 2n}}{{4n + 5}}} = \lim \sqrt {\dfrac{{\dfrac{7}{n} - 2}}{{4 + \dfrac{5}{n}}}} = \sqrt {\dfrac{{ - 2}}{4}} \)do đó không tồn tại giới hạn
Câu 8: Đáp án C
\(\begin{array}{l}\lim \dfrac{{\sqrt {{n^2} + 1} - \sqrt[3]{{3{n^3} + 2}}}}{{\sqrt[4]{{2{n^4} + n + 2}} - n}}\\ = \lim \dfrac{{\sqrt {1 + \dfrac{1}{{{n^2}}}} - \sqrt[3]{{3 + \dfrac{2}{{{n^3}}}}}}}{{\sqrt[4]{{2 + \dfrac{1}{{{n^3}}} + \dfrac{2}{{{n^4}}}}} - 1}}\\ = \dfrac{{1 - \sqrt[3]{3}}}{{\sqrt[4]{2} - 1}}\end{array}\)
Câu 9: Đáp án B
\(\begin{array}{l}\lim \left( {\sqrt {{n^2} - n + 1} - \sqrt {{n^2} - 1} } \right)\\ = \lim \dfrac{n}{{\sqrt {{n^2} - n + 1} + \sqrt {{n^2} - 1} }}\\ = \lim \dfrac{1}{{\sqrt {1 - \dfrac{1}{n} + \dfrac{1}{{{n^2}}}} + \sqrt {1 + \dfrac{1}{{{n^2}}}} }} = \dfrac{1}{2}\end{array}\)
Câu 10: Đáp án C
Cấp số nhân lùi vô hạn \(({u_n})\)có \({u_1} = 15;S = 60\) thì \(q = \dfrac{3}{4}\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11
Bài tập & Lời giải:
- 👉 Đề kiểm tra 15 phút - Đề số 1 - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Đề số 2 - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Đề số 4 - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Đề số 5 - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Đề số 6 - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Đề số 7 - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Đề số 8 - Chương 4 - Đại số và Giải tích 11
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.
Đề thi giữa kì 1 Toán 11
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 11
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa kì 2 Toán 11
- 👉 Đề ôn tập giữa kì 2- Có đáp án và lời giải chi tiết
- 👉 Đề thi giữa học kì 2 của các trường có lời giải – Mới nhất
Đề thi học kì 2 Toán 11
Đề kiểm tra 15 phút Toán 11
- 👉 Đề kiểm tra 15 phút – Chương 1 – Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 3 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 3 - Hình học 11
Đề kiểm tra 1 tiết Toán 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết ) - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 11
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới