Đề kiểm tra 15 phút - Đề số 8 - Chương 4 - Đại số và Giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 8 - Chương 4 - Đại số và Giải tích 11

Đề bài

Câu 1: Tính \(\mathop {\lim }\limits_{x \to  - 2} \left( {3{x^2} - 3x - 8} \right)\)bằng?

A. -2.               B. 5.

C. 9.                D. 10.

Câu 2: Cho hàm số \(f(x) = \dfrac{{\sqrt x  - 1}}{{x - 1}}\). Tìm khẳng định đúng trong các khẳng định sau:

(I) \(f(x)\)gián đoạn tại x = 1.

(II) \(f(x)\)liên tục tại x = 1.

(III) \(\mathop {\lim }\limits_{x \to 1} f(x) = \dfrac{1}{2}\)

A.Chỉ (I)                  B. Chỉ (II)

C. Chỉ (I) và (III)     D. Chỉ (II) và (III)

Câu 3: Tìm khẳng định đúng trong các khẳng định sau:

I. \(f(x)\) liên tục trên đoạn [a;b] và \(f(a).f(b) < 0\) thì phương trình \(f(x) = 0\) có nghiệm.

II. \(f(x)\) không liên tục trên [a;b] và \(f(a).f(b) \ge 0\) thì phương trình \(f(x) = 0\) vô nghiệm.

A. Chỉ I đúng              B. Chỉ II đúng

C. Cả I và II đúng       D. Cả I và II sai

Câu 4: Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sin 5x}}{{5x}}\,\,\,,x \ne 0}\\{a + 2\,\,\,,x = 0}\end{array}} \right.\). Tìm a để \(f(x)\)liên tục tại x = 0.

A.1                        B. -1

C. -2                      D. 2

Câu 5: Chọn giá trị \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt {2x + 1}  - 1}}{{x(x + 1)}}\) liên tục tại x = 0.

A.1                        B. 2

C. 3                       D. 4

Câu 6: Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1}  - 2}}{{{x^2} - 1}}\,\,\,,khi\,x > 1}\\{\dfrac{{a({x^2} - 2)}}{{x - 3}}\,\,\,,khi\,x \le 1}\end{array}} \right.\) liên tục tại x = 1.

A. \(\dfrac{1}{2}\)                     B. \(\dfrac{1}{4}\)

C. \(\dfrac{3}{4}\)                     D. 1

Câu 7: Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{3 - \sqrt {9 - x} }}{x}\,\,,0 < x < 9}\\{m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x = 0}\\{\dfrac{3}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x \ge 9}\end{array}} \right.\,\,\). Tìm m để \(f(x)\)liên tục trên \({\rm{[}}0; + \infty )\) là:

A. \(\dfrac{1}{3}\)                         B. \(\dfrac{1}{2}\)

C. \(\dfrac{1}{6}\)                         D. 1

Câu 8: Cho hàm số \(f(x) = {x^3} - 1000{x^2} + 0,01\). Phương trình \(f(x) = 0\) có nghiệm thuộc khoảng nào trong các khoảng sau đây.

I.(-1;0)    , II. (0;1)    , III. ( 1;2).

A. Chỉ I                  B. Chỉ I và II

C. Chỉ II                 D. Chỉ III

Câu 9: Tính \(\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\)bằng?

A. \(\dfrac{1}{5}.\)                      B. \(\dfrac{2}{5}.\)

C. \(\dfrac{1}{2}.\)                      D. \(\dfrac{1}{3}.\)

Câu 10: Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {\dfrac{{{x^2} + 1}}{{{x^3} - x + 6}}} \,\,\,\,\,;x \ne 3;x \ne 2}\\{b + \sqrt 3 \,\,\,\,\,\,;x = 3;b \in \mathbb{R}}\end{array}} \right.\). Tìm b để \(f(x)\)liên tục tại x = 3.

A. \(\sqrt 3 \)                      B. \( - \sqrt 3 \)

C. \(\dfrac{{2\sqrt 3 }}{3}\)                   D. \( - \dfrac{{2\sqrt 3 }}{3}\)

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

D

C

A

B

A

C

C

B

D

D

Câu 1: Đáp án D

Đặt \(f\left( x \right) = 3{x^2} - 3x - 8\). Hàm số xác định trên R

Giả sử \(\left( {{x_n}} \right)\) là một dãy số bất kì thỏa mãn \({x_n} > 0\)và \({x_n} \ne  - 2\)và \({x_n} \to  - 2\)khi \(n \to \infty \)

Ta có \(\lim f\left( {{x_n}} \right) = \lim \left( {3{x_n}^2 - 3{x_n} - 8} \right) = 10\)

\( \Rightarrow \mathop {\lim }\limits_{x \to  - 2} \left( {3{x^2} - 3x - 8} \right) = 10\)

Câu 2: Đáp án D

\(f(x) = \dfrac{{\sqrt x  - 1}}{{x - 1}} = \dfrac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} = \dfrac{1}{{\left( {\sqrt x  + 1} \right)}}\)

\(f(1) = \dfrac{1}{{\left( {\sqrt 1  + 1} \right)}} = \dfrac{1}{2}\)

\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{1}{{\sqrt x  + 1}} = \dfrac{1}{2}\)       

Ta thấy \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \dfrac{1}{2} = f\left( 1 \right)\)suy ra hàm số liên tục tại x=1

Câu 3 : Đáp án A

Câu 4 : Đáp án B

Đặt t=5x

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{5x}} = \mathop {\lim }\limits_{t \to 0} \dfrac{{\sin t}}{t} = 1\)

Để hàm số liên tục tại x=0 thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\)hay \(a + 2 = 1 \Rightarrow a =  - 1\)

Câu 5 : Đáp án A

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {2x + 1}  + 1}}{{x(x + 1)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{2x}}{{x(x + 1)(\sqrt {2x + 1}  - 1)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{(x + 1)(\sqrt {2x + 1}  - 1)}} = \dfrac{2}{2} = 1\end{array}\)

Để f(x) liên tục tại x=0 thì \(f(0) = \mathop {\lim }\limits_{x \to 0} f(x) = 1\)

Câu 6 : Đáp án C

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{\sqrt {3x + 1}  - 2}}{{{x^2} - 1}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {\sqrt {3x + 1}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{3}{{\left( {x + 1} \right)\left( {\sqrt {3x + 1}  + 2} \right)}} = \dfrac{3}{8}\end{array}\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{a({x^2} - 2)}}{{x - 3}} = \dfrac{a}{2}\)

Để hàm số liên tục tại x=1  thì  \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \Leftrightarrow \dfrac{3}{8} = \dfrac{a}{2} \Rightarrow a = \dfrac{3}{4}\)

Câu 7 : Đáp án C

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{3 - \sqrt {9 - x} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{x\left( {3 + \sqrt {9 - x} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\left( {3 + \sqrt {9 - x} } \right)}} = \dfrac{1}{6}\end{array}\)

\(f\left( 0 \right) = m\)

\(\mathop {\lim }\limits_{x \to {9^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {9^ - }} \dfrac{{3 - \sqrt {9 - x} }}{x} = \mathop {\lim }\limits_{x \to {9^ - }} \dfrac{1}{{\left( {3 + \sqrt {9 - x} } \right)}} = \dfrac{1}{3}\)

\(\mathop {\lim }\limits_{x \to {9^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {9^ + }} \dfrac{3}{x} = \dfrac{1}{3}\)

\(\mathop {\lim }\limits_{x \to {9^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {9^ - }} f\left( x \right)\). Hàm số liên tục tại x=9

Với \(x > 9\) thì \(f\left( x \right) = \dfrac{3}{x}\)   liên tục

Vậy để \(f(x)\)liên tục trên \({\rm{[}}0; + \infty )\) thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow m = \dfrac{1}{6}\)

Câu 8: Đáp án B

\(\begin{array}{l}f( - 1) =  - 1000,99\\f(0) = 0,01\\f(1) =  - 998,99\\f(2) =  - 3991,99\\ \Rightarrow f( - 1).f(0) < 0\\\,\,\,\,\,\,f(0).f(1) < 0\end{array}\)

Do đó f(x) =0 có nghiệm trong các khoảng I và II

Câu 9: Đáp án D

\(\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 4x + 3}}{{{x^2} - 9}} = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {x - 1} \right)\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {x - 1} \right)}}{{\left( {x + 3} \right)}} = \dfrac{1}{3}\)

Câu 10: Đáp án D

\(f\left( 3 \right) = b + \sqrt 3 \)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \sqrt {\dfrac{{{x^2} + 1}}{{\left( {x + 2} \right)\left( {{x^2} - 2x + 3} \right)}}} \\ = \sqrt {\dfrac{{10}}{{5(9 - 6 + 3)}}}  = \dfrac{{\sqrt 3 }}{3}\end{array}\)

Để hàm số liên tục tại x = 3 thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Leftrightarrow \dfrac{{\sqrt 3 }}{3} = b + \sqrt 3  \Rightarrow b = \dfrac{{ - 2\sqrt 3 }}{3}\)

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.