Đề kiểm tra 45 phút chương 1 phần Đại số 8 - Đề số 1
Đề bài
Câu 1: Khẳng định sau đúng hay sai?
\(\begin{array}{l}1)\,\,\left( {\dfrac{1}{4}{a^2} - {b^2}} \right) = \left( {\dfrac{1}{2}a - b} \right)\left( {\dfrac{1}{2}a + b} \right)\\2)\,\,{\left( {\sqrt 5 x - b} \right)^2} = {\left( {b - \sqrt 5 x} \right)^2}\\3)\,\,{\left( {2x + 1} \right)^3} = {x^3} + 3{x^2} + 3x + 1\\4)\,\,3{y^2} - 2y - 1 = \left( {3y + 1} \right)\left( {y - 1} \right)\end{array}\)
Câu 2: Chọn kết quả đúng
1. Khai triển đẳng thức: \({\left( {\dfrac{1}{3}x + 3y} \right)^2}\) ta được kết quả
\(\begin{array}{l}(A)\,\,\dfrac{1}{9}{x^2} + 9{y^2}\\(B)\,\,\dfrac{1}{9}{x^2} - 9{y^2} - 2xy\\(C)\,\,\dfrac{1}{9}{x^2} + 2xy + 9{y^2}\\(D)\,\,\dfrac{1}{9}{x^2} + xy - {y^2}\end{array}\)
2. Kết quả phép chia đa thức \(21{x^2}y - 7x{y^2} + xy\) cho xy là:
\(\begin{array}{l}(A)\,\,21x - 7y\\(B)\,\,21x + 7y\\(C)\,\,21x - 7y + xy\\(D)\,\,21x - 7y + 1\end{array}\)
Câu 3:
1. Thực hiện phép tính
\(\left( {y - 1} \right)\left( {{y^2} + y + 1} \right) \)\(+ \left( {\dfrac{1}{3}{x^2}y - y} \right)\left( {2x + {y^2}} \right)\)
2. Tìm số dư trong phép chia đa thức
\(\left( {4{y^4} - 3{y^2} - 2y + 5} \right):\left( {{y^2} - 1} \right)\)
Câu 4 :
a) Phân tích đa thức thành nhân tử
\(A = 5{x^2} - 10xy - 20{z^2} + 5{y^2}\)
b) Tìm \(x\) thỏa mãn: \({x^3} = x\)
Lời giải chi tiết
Câu 1:
Phương pháp giải:
1) Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
2) Áp dụng hằng đẳng thức: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
3) Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)
4) Phân tích đa thức thành nhân tử bằng phương pháp tách và nhóm hạng tử để xuất hiện nhân tử chung.
Lời giải:
\(\begin{array}{l}1)\,\,\left( {\dfrac{1}{4}{a^2} - {b^2}} \right) = \left[ {{{\left( {\dfrac{1}{2}a} \right)}^2} - {b^2}} \right] \\= \left( {\dfrac{1}{2}a - b} \right)\left( {\dfrac{1}{2}a + b} \right)\\2)\,\,{\left( {\sqrt 5 x - b} \right)^2}\\ = {\left( {\sqrt 5 x} \right)^2} - 2.\sqrt 5 x.b + {b^2}\\ = {b^2} - 2.b.\sqrt 5 x + {\left( {\sqrt 5 x} \right)^2}\\ = {\left( {b - \sqrt 5 x} \right)^2}\\3)\,\,{\left( {2x + 1} \right)^3}\\ = {\left( {2x} \right)^3} + 3.{\left( {2x} \right)^2}.1 + 3.2x{.1^2} + {1^3}\\ = 8{x^3} + 12{x^2} + 6x + 1\\4)\,\,3{y^2} - 2y - 1\\ = 3{y^2} + y - 3y - 1\\ = y\left( {3y + 1} \right) - \left( {3y + 1} \right)\\ = \left( {3y + 1} \right)\left( {y - 1} \right)\end{array}\)
Các khẳng định đúng: 1, 2, 4
Khẳng đinh sai: 3
Câu 2:
1)
Phương pháp giải:
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
Lời giải:
\({\left( {\dfrac{1}{3}x + 3y} \right)^2}\)
\( = {\left( {\dfrac{1}{3}x} \right)^2} + 2.\left( {\dfrac{1}{3}x} \right).3y \)\(+ {\left( {3y} \right)^2}\)
\( = \dfrac{1}{9}{x^2} + 2xy + 9{y^2}\)
Chọn C.
2)
Phương pháp giải:
- Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.
- Áp dụng công thức chia hai lũy thừa cùng cơ số: \({x^n}:{x^m} = {x^{n - m}}\) với \(n \ge m;\,\,n,m \in N\)
Lời giải:
\(\begin{array}{l}\left( {21{x^2}y - 7x{y^2} + xy} \right):xy\\ = \left( {21{x^2}y:xy} \right) - \left( {7x{y^2}:xy} \right) + \left( {xy:xy} \right)\\ = 21x - 7y + 1\end{array}\)
Chọn D.
Câu 3:
1)
Phương pháp giải:
- Áp dụng hằng đẳng thức: \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)
- Quy tắc nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải:
\(\left( {y - 1} \right)\left( {{y^2} + y + 1} \right) \)\(+ \left( {\dfrac{1}{3}{x^2}y - y} \right)\left( {2x + {y^2}} \right)\)
\(= {y^3} - {1^3} + \dfrac{1}{3}{x^2}y.\left( {2x + {y^2}} \right) \)\(- y.\left( {2x + {y^2}} \right)\)
\( = {y^3} - 1 + \dfrac{2}{3}{x^3}y + \dfrac{1}{3}{x^2}{y^3} - 2xy - {y^3}\)
\( = \dfrac{2}{3}{x^3}y + \dfrac{1}{3}{x^2}{y^3} - 2xy - 1\)
2)
Phương pháp giải:
- Áp dụng quy tắc chia đa thức một biến đã sắp xếp.
- Áp dụng công thức chia hai lũy thừa cùng cơ số: \({x^n}:{x^m} = {x^{n - m}}\) với \(n \ge m;\,\,n,m \in N\)
Lời giải:
Ta có: \(4{y^4}\, - 3{y^2} - 2y + 5\, \)\(= \,\left( {{y^2} - 1} \right)\left( {4{y^2} + 1} \right) + \left( { - 2y + 6} \right)\)
Số dư trong phép chia là \( - 2y + 6\)
Ta có: \(4{y^4}\, - 3{y^2} - 2y + 5\, \)\(= \,\left( {{y^2} - 1} \right)\left( {4{y^2} + 1} \right) + \left( { - 2y + 6} \right)\)
Số dư trong phép chia là \( - 2y + 6\).
Câu 4:
Phương pháp giải:
a) Áp dụng phương pháp phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung, nhóm hạng tử, dùng hằng đẳng thức.
Áp dụng các hằng đẳng thức:
\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\end{array}\)
b) Áp dụng:
- Phương pháp phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung, dùng hằng đẳng thức.
- Hằng đẳng thức \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)
- Tính chất đa thức bằng \(0\) nếu nó chứa nhân tử bằng \(0.\)
\(B\left( x \right)C\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\)
Lời giải:
a)
\(\begin{array}{l}A = 5{x^2} - 10xy - 20{z^2} + 5{y^2}\\ = 5{x^2} - 10xy + 5{y^2} - 20{z^2}\\ = 5\left( {{x^2} - 2xy + {y^2} - 4{z^2}} \right)\\ = 5\left[ {\left( {{x^2} - 2xy + {y^2}} \right) - {{\left( {2z} \right)}^2}} \right]\\ = 5\left[ {{{\left( {x - y} \right)}^2} - {{\left( {2z} \right)}^2}} \right]\\ = 5\left( {x - y - 2z} \right)\left( {x - y + 2z} \right)\end{array}\)
b)
\(\begin{array}{l}{x^3} = x\\{x^3} - x = 0\\x\left( {{x^2} - 1} \right) = 0\\x\left( {x - 1} \right)\left( {x + 1} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x = 0\\x - 1 = 0\\x + 1 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\end{array}\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Xem thêm lời giải Vở bài tập Toán 8
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 2
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc
Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 8
- Tài liệu Dạy - học Toán 8
- SBT Toán lớp 8
- Vở bài tập Toán 8
- SGK Toán lớp 8
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 8
- Tài liệu Dạy - học Hóa học 8
- SBT Hóa lớp 8
- SGK Hóa lớp 8
- Giải môn Hóa học lớp 8
Ngữ Văn
- Đề thi, đề kiểm tra Văn 8
- SBT Ngữ văn lớp 8
- Tác giả - Tác phẩm văn 8
- Văn mẫu lớp 8
- Vở bài tập Ngữ văn lớp 8
- Soạn văn 8 chi tiết
- Soạn văn 8 ngắn gọn
- Soạn văn 8 siêu ngắn
- Bài soạn văn lớp 8 siêu ngắn
- Bài soạn văn 8
- Bài văn mẫu 8
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 8
- SBT Sinh lớp 8
- Vở bài tập Sinh học 8
- SGK Sinh lớp 8
- Giải môn Sinh học lớp 8
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 8 mới
- SGK Tiếng Anh lớp 8
- SBT Tiếng Anh lớp 8 mới
- Vở bài tập Tiếng Anh 8
- SGK Tiếng Anh lớp 8 Mới