Lý thuyết định lí đảo và hệ quả của định lí Talet

Nếu một đường thẳng cắt hai cạnh một tam giác và định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Lý thuyết:

I. Các kiến thức cần nhớ

1. Tỉ số của hai đoạn thẳng.

a. Tỉ số của hai đoạn thẳng

Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

Tỉ số của hai đoạn thẳng không phụ thuộc vào cách chọn đơn vị đo.

b. Đoạn thẳng tỉ lệ

 Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng $A'B'$ và $C'D'$ nếu có tỉ lệ thức:

$\dfrac{{AB}}{{CD}} = \dfrac{{A'B'}}{{C'D'}}$ hay $\dfrac{{AB}}{{A'B'}} = \dfrac{{CD}}{{C'D'}}$.

2. Định lí Ta-lét trong tam giác

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Ví dụ: Ở hình 1 ta có $\Delta ABC,\,\,DE//BC $$\Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}}$ và $\dfrac{{AD}}{{DB}} = \dfrac{{AE}}{{EC}}$

3. Định lí Ta-lét đảo

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Ví dụ: $\Delta ABC$có \(\dfrac{{AD}}{{DB}} = \dfrac{{AE}}{{EC}} \Rightarrow DE{\rm{//}}BC\) (h.2)

4. Hệ quả của định lí Ta-lét

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh tam giác đã cho.

\(\Delta ABC,DE//BC \)\(\Rightarrow \dfrac{{AD}}{{AB}}= \dfrac{{AE}}{{AC}} = \dfrac{{DE}}{{BC}}\) (h.2)

Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng \(a\) song song với một cạnh của tam giác và cắt phần kéo dài của hai cạnh còn lại.

Ở hai hình trên \(\Delta ABC\) có \(BC{\rm{//}}B'C'\)\( \Rightarrow \dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}} = \dfrac{{B'C'}}{{BC}}.\)

II. Các dạng toán thường gặp

Dạng 1: Tính độ dài đoạn thẳng, chu vi, diện tích và các tỉ số.

Phương pháp:

Sử dụng định lí Ta-lét, hệ quả định lí Ta-lét, tỉ số đoạn thẳng để tính toán.

+ Định lý: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

+ Hệ quả: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh tam giác đã cho.

+ Ngoài ra, ta còn sử dụng đến tính chất tỉ lệ thức:

Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\)thì \( \left\{ \begin{array}{l}ad = bc\\\dfrac{a}{c} = \dfrac{b}{d}\\\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d};\,\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\\\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\end{array} \right.\)

Dạng 2: Chứng minh hai đường thẳng song song, chứng minh các đẳng thức hình học.

Phương pháp:

Ta sử dụng định lí Ta-lét, định lí đảo và hệ quả để chứng minh.

Xem thêm lời giải SGK Toán lớp 8

Giải bài tập toán lớp 8 như là cuốn để học tốt Toán lớp 8. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 8. Giai toan 8 xem mục lục giai toan lop 8 sach giao khoa duoi day

PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

CHƯƠNG I. PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC

CHƯƠNG II. PHÂN THỨC ĐẠI SỐ

CHƯƠNG I. TỨ GIÁC

CHƯƠNG II. ĐA GIÁC, DIỆN TÍCH ĐA GIÁC

CHƯƠNG III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG IV. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG III. TAM GIÁC ĐỒNG DẠNG

CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM - TOÁN 8

Xem Thêm

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.