Phần câu hỏi bài 11 trang 32, 33 Vở bài tập toán 8 tập 1
Câu 33.
Nối một biểu thức ở cột bên trái với một biểu thức ở cột bên phải để được đẳng thức đúng.
Phương pháp giải:
Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.
Lời giải chi tiết:
\(1)\,\,\left( {{x^3}y{z^5} + {x^5}{y^3}z + xy{z^2}} \right):xyz\)
\( = \left( {{x^3}y{z^5}} \right):xyz + \left( {{x^5}{y^3}z} \right):xyz\)\( + \left( {xy{z^2}} \right):xyz\)
\( = {x^2}{z^4} + {x^4}{y^2} + z\)
\(2)\,\,\left( { - 2{x^5}{y^9}{z^4} + \dfrac{5}{7}{x^8}{y^7}{z^6} - \dfrac{3}{4}{x^4}{y^2}z} \right)\)\(:\left( { - \dfrac{1}{2}{x^2}yz} \right)\)
\( = \left( { - 2{x^5}{y^9}{z^4}} \right):\left( { - \dfrac{1}{2}{x^2}yz} \right) \)\(+ \left( {\dfrac{5}{7}{x^8}{y^7}{z^6}} \right):\left( { - \dfrac{1}{2}{x^2}yz} \right) \)\(+ \left( { - \dfrac{3}{4}{x^4}{y^2}z} \right):\left( { - \dfrac{1}{2}{x^2}yz} \right)\)
\( = 4{x^3}{y^8}{z^3} - \dfrac{{10}}{7}{x^6}{y^6}{z^5} + \dfrac{3}{2}{x^2}y\)
\( = 4{x^3}{y^8}{z^3} - 1\dfrac{3}{7}{x^6}{y^6}{z^5} + 1\dfrac{1}{2}{x^2}y\)
\(3)\,\,\left( {{x^8}{y^5} + {x^7}{y^6} + 3{x^5}{y^3}} \right)\)\(:\left( { - \dfrac{1}{2}{x^2}{y^3}} \right)\)
\( = \left( {{x^8}{y^5}} \right):\left( { - \dfrac{1}{2}{x^2}{y^3}} \right) \)\(+ \left( {{x^7}{y^6}} \right):\left( { - \dfrac{1}{2}{x^2}{y^3}} \right)\) \( + \left( {3{x^5}{y^3}} \right):\left( { - \dfrac{1}{2}{x^2}{y^3}} \right)\)
\( = - 2{x^6}{y^2} - 2{x^5}{y^3} - 6{x^3}\)
\(4)\,\,\left( {\,\,\dfrac{2}{3}{x^5}{y^5}{t^4} - \dfrac{5}{6}{x^{17}}{y^8}{t^4} + {x^5}{y^3}{t^4}} \right)\) \(:\left( { - \dfrac{3}{5}{x^2}{y^2}{t^4}} \right)\)
\( = \left( {\,\dfrac{2}{3}{x^5}{y^5}{t^4}} \right):\left( { - \dfrac{3}{5}{x^2}{y^2}{t^4}} \right)\) \( + \left( { - \dfrac{5}{6}{x^{17}}{y^8}{t^4}} \right):\left( { - \dfrac{3}{5}{x^2}{y^2}{t^4}} \right)\) \( + \left( {{x^5}{y^3}{t^4}} \right):\left( { - \dfrac{3}{5}{x^2}{y^2}{t^4}} \right)\)
\( = \dfrac{{ - 10}}{9}{x^3}{y^3} + \dfrac{{25}}{{18}}{x^{15}}{y^6} - \dfrac{5}{3}{x^3}y\)
\( = - 1\dfrac{1}{9}{x^3}{y^3} + 1\dfrac{7}{{18}}{x^{15}}{y^6} - \dfrac{5}{3}{x^3}y\)
Ta nối như sau:
1 – e; 2 – a; 3 – b.
4 không có đáp án nào phù hợp.
Chú ý:
Đề bài trong sách thiếu dấu ngoặc của đa thức bị chia.
Câu 34.
Khoanh tròn vào chữ cái trước kết quả đúng
Đa thức \(5{a^2}{b^3} + {a^5}{b^3} + {a^7}{b^2}\) chia hết cho đơn thức \({a^{n - 1}}{b^n}\) khi
\((A)\,\,n = 1\) hoặc \(n = 2\)
\((B)\,\,n \le 3\)
\((C)\,\,n = 0\)
\((D)\,\,n \ge 1\)
Phương pháp giải:
- Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.
- Đa thức \(A\) chia hết cho đơn thức \(B\) nếu từng hạng tử của đa thức \(A\) chia hết cho đơn thức \(B.\)
- Quy tắc chia hai lũy thừa cùng cơ số: \({x^m}:{x^n} = {x^{m - n}}\) với \(m, n\) là số tự nhiên, \(m \ge n\)
Lời giải chi tiết:
\(\left( {5{a^2}{b^3} + {a^5}{b^3} + {a^7}{b^2}} \right):{a^{n - 1}}{b^n}\)
\( = \left( {5{a^2}{b^3}:{a^{n - 1}}{b^n}} \right) \)\(+ \left( {{a^5}{b^3}:{a^{n - 1}}{b^n}} \right) \)\(+ \left( {{a^7}{b^2}:{a^{n - 1}}{b^n}} \right)\)
\( = 5{a^{2 - \left( {n - 1} \right)}}.{b^{3 - n}} \)\(+ {a^{5 - \left( {n - 1} \right)}}.{b^{3 - n}} \)\(+ {a^{7 - \left( {n - 1} \right)}}.{b^{2 - n}}\)
\(= 5{a^{2 - n + 1}}{b^{3 - n}} + {a^{5 - n + 1}}{b^{3 - n}} \)\(+ {a^{7 - n + 1}}{b^{2 - n}}\)
\( = 5{a^{3 - n}}{b^{3 - n}} + {a^{6 - n}}{b^{3 - n}} \)\(+ {a^{8 - n}}{b^{2 - n}}\)
Để đa thức \(5{a^2}{b^3} + {a^5}{b^3} + {a^7}{b^2}\) chia hết cho đơn thức \({a^{n - 1}}{b^n}\) thì
\(\left\{ \begin{array}{l}3 - n \ge 0\\6 - n \ge 0\\8 - n \ge 0\\2 - n \ge 0\\n - 1 \ge 0\\n \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n \le 3\\n \le 6\\n \le 8\\n \le 2\\n \ge 1\\n \ge 0\end{array} \right. \)\(\Leftrightarrow 1 \le n \le 2\)
Mà \(n \in N\) nên \(n = 1\) hoặc \(n = 2\) .
Chọn A.
Câu 35.
Điền vào chỗ … để được đẳng thức đúng
\(\left( {2{x^3}{y^7} - \dfrac{1}{6}{x^7}{y^5} + {x^4}{y^3}} \right)\)\(:\left( { - \dfrac{1}{5}x{y^2}} \right) \)\(= ...{x^2}{y^5} + \dfrac{{...}}{6}{x^6}{y^{...}} - ...{x^3}...\)
\(2)\,\,\left( {12{x^n}{y^m}{t^p} + \dfrac{2}{3}{x^{n + 3}}{y^{m + 1}} - {x^{n + 4}}{y^m}{t^{p + 3}}} \right)\)\(:{x^{n - 5}}{y^{m - 2}}{t^{p - 1}}\)
\( = 12{x^5}{y^2}t + \dfrac{2}{3}... - ...{t^4}.\)
Phương pháp giải:
- Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.
Lời giải chi tiết:
\(1)\,\,\left( {2{x^3}{y^7} - \dfrac{1}{6}{x^7}{y^5} + {x^4}{y^3}} \right)\)\(:\left( { - \dfrac{1}{5}x{y^2}} \right)\)
\( = \left( {2{x^3}{y^7}} \right):\left( { - \dfrac{1}{5}x{y^2}} \right) \)\(+ \left( { - \dfrac{1}{6}{x^7}{y^5}} \right):\left( { - \dfrac{1}{5}x{y^2}} \right) \)\(+ \left( {{x^4}{y^3}} \right):\left( { - \dfrac{1}{5}x{y^2}} \right)\)
\( = - 10{x^2}{y^5} + \dfrac{5}{6}{x^6}{y^3} - 5{x^3}y\)
\(2)\,\,\left( {12{x^n}{y^m}{t^p} + \dfrac{2}{3}{x^{n + 3}}{y^{m + 1}} - {x^{n + 4}}{y^m}{t^{p + 3}}} \right)\)\(:{x^{n - 5}}{y^{m - 2}}{t^{p - 1}}\)
\( = \left( {12{x^n}{y^m}{t^p}:{x^{n - 5}}{y^{m - 2}}{t^{p - 1}}} \right) \)\(+ \left( {\dfrac{2}{3}{x^{n + 3}}{y^{m + 1}}:{x^{n - 5}}{y^{m - 2}}{t^{p - 1}}} \right) \)\(+ \left( { - {x^{n + 4}}{y^m}{t^{p + 3}}:{x^{n - 5}}{y^{m - 2}}{t^{p - 1}}} \right)\)
\( = 12{x^5}{y^2}t + \dfrac{2}{3}{x^8}{y^3}{t^{1 - p}} \)\(- {x^9}{y^2}{t^4}.\)
Chú ý:
\(1)\;{t^{p - 1}} = {t^0}:{t^{p - 1}} \)\(= {t^{0 - \left( {p - 1} \right)}} \)\(= {t^{ - p + 1}} = {t^{1 - p}}\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 11. Chia đa thức cho đơn thức
Xem thêm lời giải Vở bài tập Toán 8
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 2
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc
Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 8
- Tài liệu Dạy - học Toán 8
- SBT Toán lớp 8
- Vở bài tập Toán 8
- SGK Toán lớp 8
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 8
- Tài liệu Dạy - học Hóa học 8
- SBT Hóa lớp 8
- SGK Hóa lớp 8
- Giải môn Hóa học lớp 8
Ngữ Văn
- Đề thi, đề kiểm tra Văn 8
- SBT Ngữ văn lớp 8
- Tác giả - Tác phẩm văn 8
- Văn mẫu lớp 8
- Vở bài tập Ngữ văn lớp 8
- Soạn văn 8 chi tiết
- Soạn văn 8 ngắn gọn
- Soạn văn 8 siêu ngắn
- Bài soạn văn lớp 8 siêu ngắn
- Bài soạn văn 8
- Bài văn mẫu 8
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 8
- SBT Sinh lớp 8
- Vở bài tập Sinh học 8
- SGK Sinh lớp 8
- Giải môn Sinh học lớp 8
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 8 mới
- SGK Tiếng Anh lớp 8
- SBT Tiếng Anh lớp 8 mới
- Vở bài tập Tiếng Anh 8
- SGK Tiếng Anh lớp 8 Mới