Phần câu hỏi bài 3 trang 149 Vở bài tập toán 8 tập 1
Bài làm:
Câu 7.
Một tam giác có độ dài một cạnh tăng gấp đôi, chiều cao tương ứng không đổi. Diện tích tam giác đó tăng gấp
(A) \(8\) lần (B) \(4\) lần
(C) \(2\) lần (D) \(1,5\) lần
Phương pháp giải:
Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.
$$S = {1 \over 2}ah$$
(\(S\) là diện tích, \(a\) là cạnh tam giác, \(h\) là chiều cao tương ứng với cạnh \(a\))
Giải chi tiết:
Gọi độ dài cạnh và chiều cao tương ứng của tam giác ban đầu là \(a;h\)
Diện tích tam giác lúc đầu là: \(S = \dfrac{1}{2}ah\)
Độ dài cạnh tăng lên gấp đôi là \(2a\)
Diện tích tam giác sau khi thay đổi là \(S' = \dfrac{1}{2}(2a).h = ah = 2S\)
Chọn C.
Câu 8.
Một tam giác cân có cạnh đáy bằng \(30\,cm\), chiều cao tương ứng bằng \(20\,cm\). Chiều cao ứng với cạnh bên bằng
(A) \(12\,cm\) (B) \(24\,cm\)
(C) \(48\,cm\) (D) Một đáp số khác.
Phương pháp giải:
- Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.
$$S = {1 \over 2}ah$$
(\(S\) là diện tích, \(a\) là cạnh tam giác, \(h\) là chiều cao tương ứng với cạnh \(a\))
- Định lí Pytago: Bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
Giải chi tiết:
Xét tam giác \(ABC\) cân tại \(A\); \(CB=30cm;AH=20cm\)
Ta có: \(HB=CB:2=30:2=15cm\)
Áp dụng định lí Pytago vào \(\Delta AHB\) vuông tại \(H\) ta có:
\(\eqalign{
& A{B^2} = A{H^2} + H{B^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = {20^2} + {15^2} = 625 = {25^2} \cr
& \Rightarrow AB = 25 ;\; AC= 25\cr} \)
\(\eqalign{
& {S_{ABC}} = {1 \over 2}AH.BC = {1 \over 2}BK.AC \cr
& \Rightarrow AH.BC = BK.AC \cr
& \Rightarrow BK = {{AH.BC} \over {AC}} = {{20.30} \over {25}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;= 24\,\left( {cm} \right) \cr} \)
Chọn B.
Câu 9.
Một tam giác đều có chiều cao bằng \(\sqrt 3 dm\). Diện tích tam giác đều đó bằng:
(A) \(3\,dm^2\)
(B) \(2\sqrt 3 \,\,d{m^2}\)
(C) \(\dfrac{{3\sqrt 3 }}{4}\,d{m^2}\)
(D) \(\sqrt 3 \,d{m^2}\)
Phương pháp giải:
- Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.
$$S = {1 \over 2}ah$$
(\(S\) là diện tích, \(a\) là cạnh tam giác, \(h\) là chiều cao tương ứng với cạnh \(a\))
- Định lí Pytago: Trong tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.
Giải chi tiết:
Xét tam giác \(ABC\) đều cạnh \(a\;(a>0)\), chiều cao \(AH=\sqrt 3 dm\).
Áp dụng định lí Pytago vào tam giác \(AHC\) vuông tại \(H\) ta có:
\(\eqalign{
& A{C^2} = A{H^2} + H{C^2} \cr
& {a^2} = {\left( {\sqrt 3 } \right)^2} + {\left( {{a \over 2}} \right)^2} \cr
& {a^2} = 3 + {{{a^2}} \over 4} \cr
& {a^2} - {{{a^2}} \over 4} = 3 \cr
& {{3{a^2}} \over 4} = 3 \cr
& \Rightarrow {a^2} = 3.4:3 = 4 \cr
& \Rightarrow a = 2 \cr} \)
\({S_{ABC}} = \dfrac{1}{2}AH.BC = \dfrac{1}{2}.\sqrt 3 .2 \)\(\,= \sqrt 3 \,\left( {d{m^2}} \right)\)
Chọn D.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 3. Diện tích tam giác
Xem thêm lời giải Vở bài tập Toán 8
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 2
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc
Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 8
- Tài liệu Dạy - học Toán 8
- SBT Toán lớp 8
- Vở bài tập Toán 8
- SGK Toán lớp 8
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 8
- Tài liệu Dạy - học Hóa học 8
- SBT Hóa lớp 8
- SGK Hóa lớp 8
- Giải môn Hóa học lớp 8
Ngữ Văn
- Đề thi, đề kiểm tra Văn 8
- SBT Ngữ văn lớp 8
- Tác giả - Tác phẩm văn 8
- Văn mẫu lớp 8
- Vở bài tập Ngữ văn lớp 8
- Soạn văn 8 chi tiết
- Soạn văn 8 ngắn gọn
- Soạn văn 8 siêu ngắn
- Bài soạn văn lớp 8 siêu ngắn
- Bài soạn văn 8
- Bài văn mẫu 8
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 8
- SBT Sinh lớp 8
- Vở bài tập Sinh học 8
- SGK Sinh lớp 8
- Giải môn Sinh học lớp 8
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 8 mới
- SGK Tiếng Anh lớp 8
- SBT Tiếng Anh lớp 8 mới
- Vở bài tập Tiếng Anh 8
- SGK Tiếng Anh lớp 8 Mới