Phần câu hỏi bài 7 trang 23 Vở bài tập toán 8 tập 1

Giải phần câu hỏi bài 7 trang 23 VBT toán 8 tập 1. Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức (a-b)^3 -(a+b)^3...

Bài làm:

Câu 21.

Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức \({\left( {a - b} \right)^3} - {\left( {a + b} \right)^3}\)  thành nhân tử ta được kết quả là:

\(\begin{array}{l}(A)\,\,2b\left( {2b + b} \right)\\(B)\,\,2b\left( { - 3{a^2} - {b^2}} \right)\\(C)\,\,2b\left( {3{a^2} + 4ab + {b^2}} \right)\\(D)\,\,2a\left( {{a^2} + 3{b^2}} \right)\end{array}\) 

Phương pháp giải:

Áp dụng các hằng đẳng thức: 

\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\\{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\end{array}\)

Giải chi tiết:

\({\left( {a - b} \right)^3} - {\left( {a + b} \right)^3}\)\(= \left[ {\left( {a - b} \right) - \left( {a + b} \right)} \right]\)\(.\left[ {{{\left( {a - b} \right)}^2} + \left( {a - b} \right)\left( {a + b} \right) + {{\left( {a + b} \right)}^2}} \right]\)

\( = \left( {a - b - a - b} \right)\)\(.\left[ {{{\left( {a - b} \right)}^2} + {a^2} - {b^2} + {{\left( {a + b} \right)}^2}} \right]\)

\(=  - 2b\left( {{a^2} - 2ab + {b^2} + {a^2} - {b^2} + {a^2} + 2ab + {b^2}} \right)\)\(=  - 2b\left( {3{a^2} + {b^2}} \right) \)\(= 2b\left( { - 3{a^2} - {b^2}} \right)\)

Chọn B. 


Câu 22.

Điền vào chỗ … để được đẳng thức đúng

\(\begin{array}{l}1)\,\,\left( {x - y} \right) - {\left( {x - y} \right)^3} \\= \left( {x - y} \right)\left( {... - x + y} \right)\left( {1 + x - ...} \right)\\2)\,\,\dfrac{1}{{16}}{x^2} - \dfrac{1}{{81}}{y^2} \\= \left( {...x - ...y} \right)\left( {...x + ...y} \right)\end{array}\) 

Phương pháp giải:

Áp dụng hằng đẳng thức:

\({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) 

Giải chi tiết:

\(\begin{array}{l}1)\,\,\left( {x - y} \right) - {\left( {x - y} \right)^3}\\ = \left( {x - y} \right) - \left( {x - y} \right){\left( {x - y} \right)^2}\\ = \left( {x - y} \right)\left[ {1 - {{\left( {x - y} \right)}^2}} \right]\\ = \left( {x - y} \right)\left[ {1 - \left( {x - y} \right)} \right]\left[ {1 + \left( {x - y} \right)} \right]\\ = \left( {x - y} \right)\left( {1 - x + y} \right)\left( {1 + x - y} \right)\\2)\,\,\dfrac{1}{{16}}{x^2} - \dfrac{1}{{81}}{y^2}\\ = {\left( {\dfrac{1}{4}x} \right)^2} - {\left( {\dfrac{1}{9}y} \right)^2}\\ = \left( {\dfrac{1}{4}x - \dfrac{1}{9}y} \right)\left( {\dfrac{1}{4}x + \dfrac{1}{9}y} \right)\end{array}\) 


Câu 23.

Khoanh tròn vào chữ cái trước kết quả đúng. Nếu \({x^2} - 6x + 9 = 5\left( {x - 3} \right)\)  thì giá trị của \(x\)  là:

\(\begin{array}{l}(A)\,\,3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\, - 3\\(C)\,\,8\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\,3\,\,hoặc\,\,8\end{array}\) 

Phương pháp giải:

- Đưa các đẳng thức về dạng \(A(x) = 0\)

- Phân tích đa thức ở vế trái thành nhân tử.

- Áp dụng tính chất đa thức bằng \(0\) nếu nó chứa nhân tử bằng \(0.\)

\(B\left( x \right)C\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\)

Giải chi tiết:

\(\begin{array}{l}{x^2} - 6x + 9 = 5\left( {x - 3} \right)\\{x^2} - 6x + 9 - 5\left( {x - 3} \right) = 0\\\left( {{x^2} - 2.x.3 + {3^2}} \right) - 5\left( {x - 3} \right) = 0\\{\left( {x - 3} \right)^2} - 5\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x - 3 - 5} \right) = 0\\\left( {x - 3} \right)\left( {x - 8} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x - 3 = 0\\x - 8 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 3\\x = 8\end{array} \right.\end{array}\)

Chọn D.  

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.