Phần câu hỏi bài 8 trang 25 Vở bài tập toán 8 tập 1

Giải phần câu hỏi bài 8 trang 25 VBT toán 8 tập 1. Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức x^2 - y^2 + 5x - 5y ta được kết quả...

Bài làm:

Câu 24.

Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức \({x^2} - {y^2} + 5x - 5y\)  ta được kết quả

\(\begin{array}{l}(A)\,\,\left( {x - y} \right)\left( {x + y + 5} \right)\\(B)\,\,\left( {x + y} \right)\left( {x - y - 5} \right)\\(C)\,\,\left( {x - y} \right)\left( {x + y - 5} \right)\\(D)\,\,\left( {x - y} \right)\left( {x - y - 5} \right)\end{array}\) 

Phương pháp giải:

- Nhóm hạng tử thứ nhất và hạng tử thứ hai; hạng tử thứ ba và hạng tử thứ tư.

- Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) 

Giải chi tiết:

\(\begin{array}{l}{x^2} - {y^2} + 5x - 5y\\ = \left( {{x^2} - {y^2}} \right) + \left( {5x - 5y} \right)\\ = \left( {x - y} \right)\left( {x + y} \right) + 5\left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y + 5} \right)\end{array}\) 

Chọn A.


Câu 25.

Khoanh tròn vào chữ cái trước kết quả đúng.

Cho \(2{x^2} - 4x + 2 = \left( {x - 1} \right)\left( {x + 5} \right)\)  thì ta được:

\(\begin{array}{l}(A)\,\,x = 1\,\,\,\,(B)\,\,x =  - 1\\(C)\,\,x = 7\,\,\,\,\,\,(D)\,\,x = 1\,\,\text{hoặc}\,\,x = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array}\) 

Phương pháp giải:

- Đưa các đẳng thức về dạng \(A(x) = 0\)

- Phân tích đa thức ở vế trái thành nhân tử. 

- Áp dụng hằng đẳng thức: \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

- Áp dụng tính chất đa thức bằng 0 nếu nó chứa nhân tử bằng 0.

\(B\left( x \right)C\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\)

Giải chi tiết:

\(\begin{array}{l}2{x^2} - 4x + 2 = \left( {x - 1} \right)\left( {x + 5} \right)\\2\left( {{x^2} - 2x + 1} \right) - \left( {x - 1} \right)\left( {x + 5} \right) = 0\\2{\left( {x - 1} \right)^2} - \left( {x - 1} \right)\left( {x + 5} \right) = 0\\\left( {x - 1} \right)\left[ {2\left( {x - 1} \right) - \left( {x + 5} \right)} \right] = 0\\\left( {x - 1} \right)\left( {2x - 2 - x - 5} \right) = 0\\\left( {x - 1} \right)\left( {x - 7} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 7 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 1\\x = 7\end{array} \right.\end{array}\)

Chọn D. 


Câu 26.

Nối một đa thức ở cột bên trái với một đa thức ở cột phải để được đẳng thức đúng.

 

Phương pháp giải:

- Phân tích các đa thức ở cột bên trái bằng phương pháp dùng hằng đẳng thức hoặc nhóm, sau đó so sánh kết quả phân tích với các đa thức ở cột bên phải.

- Áp dụng hằng đẳng thức: 

\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\\{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\end{array}\)

Giải chi tiết:

\(\begin{array}{l}1)\,\,{\left( {a + b} \right)^3} - 8 = {\left( {a + b} \right)^3} - {2^3}\\ = \left( {a + b - 2} \right)\left[ {{{\left( {a + b} \right)}^2} + 2\left( {a + b} \right) + {2^2}} \right]\\ = \left( {a + b - 2} \right)\left( {{a^2} + 2ab + {b^2} + 2a + 2b + 4} \right)\end{array}\) 

\(\begin{array}{l}2)\,\,{a^2} - {b^2} + 6a + 9\\ = \left( {{a^2} + 6a + 9} \right) - {b^2}\\ = \left( {a + 2.a.3 + {3^2}} \right) - {b^2}\\ = {\left( {a + 3} \right)^2} - {b^2}\\ = \left( {a + 3 + b} \right)\left( {a + 3 - b} \right)\end{array}\)

\(\begin{array}{l}3)\,\,{a^5} + {a^4}x - ay - xy\\ = \left( {{a^5} + {a^4}x} \right) - \left( {ay + xy} \right)\\ = {a^4}\left( {a + x} \right) - y\left( {a + x} \right)\\ = \left( {a + x} \right)\left( {{a^4} - y} \right)\end{array}\)

\(\begin{array}{l}4)\,\,{a^4} - 3{a^3} - 27a + 81\\ = \left( {{a^4} - 27a} \right) - \left( {3{a^3} - 81} \right)\\ = a\left( {{a^3} - 27} \right) - 3\left( {{a^3} - 27} \right)\\ = \left( {{a^3} - 27} \right)\left( {a - 3} \right)\\ = \left( {{a^3} - {3^3}} \right)\left( {a - 3} \right)\\ = \left( {a - 3} \right)\left( {{a^2} + 3a + 9} \right)\left( {a - 3} \right)\\ = {\left( {a - 3} \right)^2}\left( {{a^2} + 3a + 9} \right)\end{array}\)

Ta nối như sau:

1 – d; 2 – a; 3 – b; 4 – c.

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.