Bài 1.58 trang 36 SBT giải tích 12

Giải bài 1.58 trang 36 sách bài tập giải tích 12. Tìm giá trị của tham số m để hàm số...

Bài làm:

Tìm giá trị của tham số \(m\) để hàm số

LG a

\(y = {x^3} + (m + 3){x^2} + mx - 2\) đạt cực tiểu tại \(x = 1\)

Phương pháp giải:

Sử dụng phương pháp điều kiện cần, điều kiện đủ.

- Sử dụng điều kiện \(x = {x_0}\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) tìm \(m\).

- Thay \(m\) tìm được ở trên vào hàm số và kiểm tra \(x = {x_0}\) có là điểm cực trị theo yêu cầu hay không.

Giải chi tiết:

\(y' = 3{x^2} + 2(m + 3)x + m\)

Hàm số đạt cực tiểu tại \(x = 1\) thì: \(y'(1) = 0 \Leftrightarrow 3m + 9 = 0 \Leftrightarrow m =  - 3\)

Thử lại, \(m =  - 3\) thì \(y = {x^3} - 3x - 2\).

Khi đó, \(y' = 3{x^2} - 3 = 0 \Leftrightarrow x =  \pm 1\).

\(y'' = 6x;y''(1) = 6 > 0\) nên \(x = 1\) là điểm cực tiểu của hàm số (thỏa mãn yêu cầu)

Suy ra hàm số đạt cực tiểu tại \(x = 1\) khi \(m = 3\)


LG b

\(y =  - \dfrac{1}{3}({m^2} + 6m){x^3} - 2m{x^2} + 3x + 1\)  đạt cực đại tại \(x =  - 1\)

Phương pháp giải:

Sử dụng phương pháp điều kiện cần, điều kiện đủ.

- Sử dụng điều kiện \(x = {x_0}\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) tìm \(m\).

- Thay \(m\) tìm được ở trên vào hàm số và kiểm tra \(x = {x_0}\) có là điểm cực trị theo yêu cầu hay không.

Giải chi tiết:

\(y' =  - ({m^2} + 6m){x^2} - 4mx + 3\)

\(y'( - 1) =  - {m^2} - 6m + 4m + 3\)\( = ( - {m^2} - 2m - 1) + 4 =  - {(m + 1)^2} + 4\)

Hàm số đạt cực đại tại \(x =  - 1\) thì :

\(y'( - 1) =  - {(m + 1)^2} + 4 = 0\)\( \Leftrightarrow {(m + 1)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}m =  - 3\\m = 1\end{array} \right.\)

Thử lại,

+) Với \(m =  - 3\) ta có \(y' = 9{x^2} + 12x + 3\)

\( \Rightarrow y'' = 18x + 12\)\( \Rightarrow y''\left( { - 1} \right) =  - 18 + 12 =  - 6\; < 0\)

Suy ra hàm số đạt cực đại tại \(x =  - 1\) (thỏa mãn).

+) Với \(m = 1\) ta có:

\(y' =  - 7{x^2} - 4x + 3\)\( \Rightarrow y'' =  - 14x - 4\) \( \Rightarrow y''( - 1) = 10 > 0\)

Suy ra hàm số đạt cực tiểu tại \(x =  - 1\) (loại).

Kết luận: Hàm số đã cho đạt cực đại tại \(x =  - 1\) khi \(m =  - 3\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.