Bài 1.73 trang 39 SBT giải tích 12

Giải bài 1.73 trang 39 sách bài tập giải tích 12. Phương trình tiếp tuyến của đồ thị hàm số ...

Đề bài

Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với đường thẳng \(y = 24x - 1\) là:

A. \(y = 24x - 43\)

B. \(y =  - 24x - 43\)

C. \(y = 24x + 43\)

D. \(y = 24x + 1\)

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết: Hai đường thẳng song song thì hệ số góc của chúng bằng nhau.

- Giải phương trình \(y' = k\) tìm hoành độ tiếp điểm.

- Từ đó suy ra tiếp điểm và viết phương trình tiếp tuyến theo công thức \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Lời giải chi tiết

Tiếp tuyến song song đường thẳng \(y = 24x - 1\) nên có hệ số góc \(k = 24\).

Ta có: \(y' = 4{x^3} - 4x = 24\) \( \Leftrightarrow {x^3} - x - 6 = 0\) \( \Leftrightarrow \left( {x - 2} \right)({x^2} + 2x + 3) = 0\)

\( \Leftrightarrow x = 2\)

Với \(x = 2\) thì \(y = 5\) nên tiếp tuyến có phương trình: \(y = 24\left( {x - 2} \right) + 5\) hay \(y = 24x - 43\).

Chọn A.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.