Bài 1.61 trang 36 SBT giải tích 12
Bài làm:
LG a
Khảo sát sự biến thiên và vẽ đồ thị \(\left( C \right)\) của hàm số: \(y = - {x^3} + 3x + 1\)
Phương pháp giải:
- Tìm TXĐ.
- Xét sự biến thiên.
+ Tìm các giới hạn tại vô cực.
+ Tìm khoảng đồng biến, nghịch biến.
+ Tìm cực trị (nếu có).
+ Lập bảng biến thiên.
- Vẽ đồ thị hàm số.
Lời giải chi tiết:
* Tập xác định:\(D = \mathbb{R}\),
* Chiều biến thiên:
+) \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty ,\mathop {\lim }\limits_{x \to - \infty } y = + \infty \)
+) \(y' = - 3{x^2} + 3\); \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 1}\end{array}} \right.\)
Hàm số nghịch biến trên mỗi khoảng \(( - \infty ; - 1),(1; + \infty )\).
Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).
Hàm số đạt cực đại tại \(x = 1,{y_{CD}} = 3\). Hàm số đạt cực tiểu tại \(x = - 1,{y_{CT}} = - 1\).
Bảng biến thiên:
* Đồ thị:
+) Có \(y'' = - 6x\); \(y'' = 0 \Leftrightarrow x = 0 \Rightarrow y = 1\) nên điểm uốn \(U\left( {0;1} \right)\).
+) Đồ thị cắt trục \(Oy\) tại điểm \(\left( {0;1} \right)\).
+) Vẽ đồ thị:
LG b
Chỉ ra phép biến hình biến \(\left( C \right)\) thành đồ thị \(\left( {C'} \right)\) của hàm số: \(y = {(x + 1)^3} - 3x - 4\)
Phương pháp giải:
Nhận xét dạng hàm số của \(\left( {C'} \right)\) so với \(\left( C \right)\), từ đó suy ra phép biến hình cần tìm.
Lời giải chi tiết:
Tịnh tiến \(\left( C \right)\) song song với trục \(Ox\) sang trái \(1\) đơn vị, ta được đồ thị \(\left( {{C_1}} \right)\) của hàm số \(y = f(x) = - {(x + 1)^3} + 3(x + 1) + 1\) hay \(f(x) = - {(x + 1)^3} + 3x + 4\) \(\left( {{C_1}} \right)\).
Lấy đối xứng \(\left( {{C_1}} \right)\) qua trục \(Ox\), ta được đồ thị \(\left( {C'} \right)\) của hàm số \(y = g(x) = {(x + 1)^3} - 3x - 4\)
LG c
Dựa vào đồ thị \(\left( {C'} \right)\), biện luận theo \(m\) số nghiệm của phương trình: \({(x + 1)^3} = 3x + m\)
Phương pháp giải:
- Biến đổi phương trình về dạng \({(x + 1)^3} - 3x - 4 = m - 4\).
- Từ đồ thị \(\left( {C'} \right)\) đã dựng và mối tương quan giữa số nghiệm của phương trình với tương giao đồ thị để biện luận.
Lời giải chi tiết:
Ta có: \({(x + 1)^3} = 3x + m\)\( \Leftrightarrow {(x + 1)^3} - 3x - 4 = m - 4\)
Số nghiệm của phương trình đã cho là số giao điểm của hai đường \(y = g(x) = {(x + 1)^3} - 3x - 4\) \(\left( {C'} \right)\;\) và\(y = m-4\)\(\left( {{d_1}} \right)\)
Từ đồ thị, ta suy ra:
+) Nếu \(\left[ \begin{array}{l}m - 4 < - 3\\m - 4 > 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < 1\\m > 5\end{array} \right.\) thì phương trình đã cho có một nghiệm.
+) Nếu \(\left[ \begin{array}{l}m - 4 = - 3\\m - 4 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\) phương trình đã cho có hai nghiệm.
+) Nếu\( - 3 < m - 4 < 1 \Leftrightarrow 1 < m < 5\), phương trình đã cho có ba nghiệm.
LG d
Viết phương trình tiếp tuyến \(\left( d \right)\) của đồ thị \(\left( {C'} \right)\), biết tiếp tuyến đó vuông góc với đường thẳng \(y = - \dfrac{x}{9} + 1\)
Phương pháp giải:
- Tìm hệ số góc \(k\) của \(d\), sử dụng tính chất hai đường thẳng vuông góc nếu tích hai hệ số góc bằng \( - 1\).
- Giải phương trình \(y' = k\) tìm hoành độ tiếp điểm, suy ra tung độ.
- Viết phương trình tiếp tuyến tho công thức \(y = k\left( {x - {x_0}} \right) + {y_0}\).
Lời giải chi tiết:
Vì \(\left( d \right)\) vuông góc với đường thẳng \(y = - \dfrac{x}{9} + 1\) nên ta có hệ số góc bằng \(9\).
Ta có: \(g'(x) = 3{(x + 1)^2} - 3\)
\(g'(x) = 9 \Leftrightarrow 3{\left( {x + 1} \right)^2} - 3 = 9\)\( \Leftrightarrow {\left( {x + 1} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}x + 1 = 2\\x + 1 = - 2\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 1\\x = - 3 \Rightarrow y = - 3\end{array} \right.\)
+ Với \(x = 1,y = 1\) ta có tiếp tuyến: \(y = 9\left( {x - 1} \right) + 1\) hay \(y = 9x - 8\).
+ Với \(x = - 3,y = - 3\) ta có tiếp tuyến: \(y = 9\left( {x + 3} \right) - 3\) hay \(y = 9x + 24\).
Vậy có hai tiếp tuyến phải tìm là: \(y = 9x - 8\) và \(y = 9x + 24\).
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài tập & Lời giải:
- 👉 Bài 1.56 trang 36 SBT giải tích 12
- 👉 Bài 1.57 trang 36 SBT giải tích 12
- 👉 Bài 1.58 trang 36 SBT giải tích 12
- 👉 Bài 1.59 trang 36 SBT giải tích 12
- 👉 Bài 1.60 trang 36 SBT giải tích 12
- 👉 Bài 1.62 trang 37 SBT giải tích 12
- 👉 Bài 1.63 trang 37 SBT giải tích 12
- 👉 Bài 1.64 trang 37 SBT giải tích 12
- 👉 Bài 1.65 trang 37 SBT giải tích 12
- 👉 Bài 1.66 trang 38 SBT giải tích 12
- 👉 Bài 1.67 trang 38 SBT giải tích 12
- 👉 Bài 1.68 trang 38 SBT giải tích 12
- 👉 Bài 1.69 trang 38 SBT giải tích 12
- 👉 Bài 1.70 trang 38 SBT giải tích 12
- 👉 Bài 1.71 trang 39 SBT giải tích 12
- 👉 Bài 1.72 trang 39 SBT giải tích 12
- 👉 Bài 1.73 trang 39 SBT giải tích 12
- 👉 Bài 1.74 trang 39 SBT giải tích 12
Xem thêm lời giải SBT Toán lớp 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới