Bài 1.62 trang 37 SBT giải tích 12

Giải bài 1.62 trang 37 sách bài tập giải tích 12. Biện luận theo k số nghiệm của phương trình:...

Bài làm:

Biện luận theo k số nghiệm của phương trình:

LG a

\({(x - 1)^2} = 2|x - k|\)

Phương pháp giải:

- Phá dấu giá trị tuyệt đối đưa về hai phương trình mới.

- Biến đổi các phương trình về dạng \(f\left( x \right) = g\left( k \right)\).

- Vẽ đồ thị các hàm số \(y = f\left( x \right)\) trên cùng một hệ trục tọa độ.

- Từ đó biện luận nghiệm của phương trình, sử dụng sự tương giao giữa đường thẳng \(y = g\left( k \right)\) với đồ thị hàm số \(y = f\left( x \right)\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
{\left( {x - 1} \right)^2} = 2\left| {x - k} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
2\left( {x - k} \right) = {\left( {x - 1} \right)^2}\\
2\left( {x - k} \right) = - {\left( {x - 1} \right)^2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x - 2k = {x^2} - 2x + 1\\
2x - 2k = - {x^2} + 2x - 1
\end{array} \right.
\end{array}\)

\( \Leftrightarrow \left[ \begin{array}{l} - {x^2} + 4x - 1 = 2k\\{x^2} + 1 = 2k\end{array} \right.\)

Ta vẽ đồ thị của hai hàm số: \(y =  - {x^2} + 4x - 1\) và \(y = {x^2} + 1\) như sau:

Từ đồ thị ta suy ra:

+) Nếu \(2k > 3 \Leftrightarrow k > \dfrac{3}{2}\): phương trình có hai nghiệm;

+) Nếu \(2k = 3 \Leftrightarrow k = \dfrac{3}{2}\): phương trình có ba nghiệm;

+) Nếu \(2 < 2k < 3 \Leftrightarrow 1 < k < \dfrac{3}{2}\): phương trình có bốn nghiệm;

+) Nếu \(2k = 2 \Leftrightarrow k = 1\): phương trình có ba nghiệm;

+) Nếu \(1 < 2k < 2 \Leftrightarrow \dfrac{1}{2} < k < 1\): phương trình có bốn nghiệm ;

+) Nếu \(2k = 1 \Leftrightarrow k = \dfrac{1}{2}\): phương trình có ba nghiệm ;

+) Nếu \(2k < 1 \Leftrightarrow k < \dfrac{1}{2}\): phương trình có hai nghiệm.

Kết luận:

+) Phương trình có \(4\) nghiệm \( \Leftrightarrow \left[ \begin{array}{l}1 < k < \dfrac{3}{2}\\\dfrac{1}{2} < k < 1\end{array} \right.\).

+) Phương trình có \(3\) nghiệm \( \Leftrightarrow \left[ \begin{array}{l}k = 1\\k = \dfrac{1}{2}\\k = \dfrac{3}{2}\end{array} \right.\).

+) Phương trình có \(2\) nghiệm \( \Leftrightarrow \left[ \begin{array}{l}k > \dfrac{3}{2}\\k < \dfrac{1}{2}\end{array} \right.\).


LG b

\({(x + 1)^2}(2 - x) = k\)

Phương pháp giải:

- Khảo sát và vẽ đồ thị hàm số \(y = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\).

- Biện luận số nghiệm dựa vào tương giao đồ thị.

Lời giải chi tiết:

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\) ta có:

\(y = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\) \( = \left( {{x^2} + 2x + 1} \right)\left( {2 - x} \right) \) \(= 2{x^2} + 4x + 2 - {x^3} - 2{x^2} - x \) \( =  - {x^3} + 3x + 2\)

\(y' =  - 3{x^2} + 3;\)\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\)

Bảng biến thiên:

Đồ thị:

Từ đồ thị hàm số ta suy ra:

* \(k > 4\;\) hoặc \(k < 0\): phương trình có một nghiệm;

* \(k = 4\) hoặc \(k = 0\): phương trình có hai nghiệm;

* \(0 < k < 4\): phương trình có ba nghiệm.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.