Bài 2 trang 82 SGK Đại số và Giải tích 11

Chứng minh rằng

Bài làm:

Chứng minh rằng với \(n\in {\mathbb N}^*\) ta luôn có:

LG a

\({n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\) chia hết cho \(3\);

Phương pháp giải:

Vận dụng phương pháp chứng minh quy nạp toán học.

Bước 1: Chứng minh mệnh đề đúng với \(n=1\).

Bước 2: Giả sử đẳng thức đúng đến \(n=k \ge 1\) (giả thiết quy nạp). Chứng minh đẳng thức đúng đến \(n=k+1\).

Khi đó đẳng thức đúng với mọi \(n \in N^*\).

Lời giải chi tiết:

Đặt \(S_n={n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\)

Với \(n = 1\) thì \(S_1= {1^3} + {3.1^2} + 5.1 = 9\) chia hết cho \(3\)

Giả sử với \(n = k ≥ 1\), \(S_k= ({k^3} + {\rm{ }}3{k^2} + {\rm{ }}5k)  \vdots\) \( 3\)

Ta phải chứng minh rằng \(S_{k+1}\)\( \vdots\) \(3\)

Thật vậy :

\(S_{k+1}={\left( {k{\rm{ }} + {\rm{ }}1} \right)^3} + {\rm{ }}3{\left( {k{\rm{ }} + {\rm{ }}1} \right)^2} + {\rm{ }}5\left( {k{\rm{ }} + {\rm{ }}1} \right)\)

\( = {k^3}{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}3{k^2} + {\rm{ }}6k{\rm{ }} + {\rm{ }}3{\rm{ }} + {\rm{ }}5k{\rm{ }} + {\rm{ }}5\)

\( =( {\rm{ }}{k^3} + {\rm{ }}3{k^2} + {\rm{ }}5k{\rm{ }}) + {\rm{ }}3{k^2} + {\rm{ }}9k{\rm{ }} + {\rm{ }}9\)

\(= {S_k} + {\rm{ }}3({k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}3)\)

Theo giả thiết quy nạp thì \(S_k \) \( \vdots\) \(3\)

Mà \(3({k^2} + {\rm{ }}3k{\rm{ }} + {\rm{ }}3) \vdots\) \(3\) nên \(S_{k+1} \vdots\) \(3\).

Vậy \({n^3} + {\rm{ }}3{n^2} + {\rm{ }}5n\) chia hết cho \(3\) với mọi \(n\in {\mathbb N}^*\).

Cách khác:

Chứng minh trực tiếp.

Ta có:

\(\begin{array}{*{20}{l}}
{{n^3}\; + {\rm{ }}3{n^2}\; + {\rm{ }}5n}\\
{\;\;\;\;\;\; = {\rm{ }}n.({n^2}\; + {\rm{ }}3n{\rm{ }} + {\rm{ }}5)}\\
{\;\;\;\;\;\; = {\rm{ }}n.({n^2}\; + {\rm{ }}3n{\rm{ }} + {\rm{ }}2{\rm{ }} + {\rm{ }}3)}\\
{\;\;\;\;\;\; = {\rm{ }}n.({n^2}\; + {\rm{ }}3n{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}3n}\\
{\;\;\;\;\;\; = {\rm{ }}n.\left( {n{\rm{ }} + {\rm{ }}1} \right)\left( {n{\rm{ }} + {\rm{ }}2} \right){\rm{ }} + {\rm{ }}3n.}
\end{array}\)

Mà: \(n\left( {n{\rm{ }} + {\rm{ }}1} \right)\left( {n{\rm{ }} + {\rm{ }}2} \right)\; \vdots  \;3\) (tích của ba số tự nhiên liên tiếp)

và \(3n \, \vdots \, 3\)

\( \Rightarrow {n^3} + 3{n^2} + 5n = n(n + 1)(n + 2) + 3n\; \vdots \;3.\)

Vậy \({n^3} + 3{n^2} + 5n\) chia hết cho \(3\) với mọi \(\forall n\; \in \;N*\)


LG b

\({4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\)

Lời giải chi tiết:

Đặt \({S_n} = {4^n} + {\rm{ }}15n{\rm{ }} - {\rm{ }}1\)

Với \(n{\rm{ }} = {\rm{ }}1,{S_1} = {\rm{ }}{4^1} + {\rm{ }}15.1{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}18\) nên \(S_1  \vdots\) \(9\)

Giả sử với \(n = k ≥ 1\) thì \({S_k} = {\rm{ }}{4^k} + {\rm{ }}15k{\rm{ }} - {\rm{ }}1\) chia hết cho \(9\).

Ta phải chứng minh \(S_{k+1} \vdots\) \(9\).

Thật vậy, ta có:

\({S_{k + 1}} = {\rm{ }}{4^{k{\rm{ }} + {\rm{ }}1}} + {\rm{ }}15\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}1\) 

\( = {4.4^k} + 15k + 15 - 1\)

\( = {4.4^k} + 15k + 14\)

\( = {4.4^k} + 60k - {45k} + 18 - 4\)

\( = \left( {{{4.4}^k} + 60k - 4} \right) - 45k + 18\)

\( = {\rm{ }}4({4^k} + {\rm{ }}15k{\rm{ }}-{\rm{ }}1){\rm{ }}-{\rm{ }}45k{\rm{ }} + {\rm{ }}18{\rm{ }} \)

\(= {\rm{ }}4{S_k}-{\rm{ }}9\left( {5k{\rm{ }}-{\rm{ }}2} \right)\)

Theo giả thiết quy nạp thì \(S_k  \vdots\) \(9\)  nên \(4S_k   \vdots 9\)

Mặt khác \(9(5k - 2)   \vdots\) \(9\), nên \(S_{k+1}  \vdots 9\)

Vậy \((4^n+ 15n - 1)  \vdots\) \(9\) với mọi \(n\in {\mathbb N}^*\)


LG c

\({n^3} + {\rm{ }}11n\) chia hết cho \(6\).

Lời giải chi tiết:

Đặt \({S_n} = {n^3} + {\rm{ }}11n\)

Với \(n = 1\), ta có \({S_1} = {\rm{ }}{1^3} + {\rm{ }}11.1{\rm{ }} = {\rm{ }}12\) nên \(S_1\) \( \vdots\) \(6\)

Giả sử với \(n = k ≥ 1\) , \({S_{k}} = {k^3} + {\rm{ }}11k \) chia hết cho 6.

Ta phải chứng minh \(S_{k+1}\)\( \vdots\) 6

Thật vậy, ta có 

\({S_{k + 1}} = {\rm{ }}\left( {k{\rm{ }} + {\rm{ }}1} \right)^3{\rm{ }} + {\rm{ }}11\left( {k{\rm{ }} + {\rm{ }}1} \right){\rm{ }}\)

\(= {\rm{ }}{k^3} + {\rm{ }}3k^2+ {\rm{ }}3k{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}11k{\rm{ }} + {\rm{ }}11\)

\( = \left( {{k^3} + 11k} \right) + \left( {3{k^2} + 3k + 12} \right)\)

\( = ({\rm{ }}{k^3} + {\rm{ }}11k){\rm{ }} + {\rm{ }}3({k^2} + {\rm{ }}k{\rm{ }} + {\rm{ }}4){\rm{ }} \)

\(= {\rm{ }}{S_k} + {\rm{ }}3({k^2} + {\rm{ }}k{\rm{ }} + {\rm{ }}4)\)

Theo giả thiết quy nạp thì  \(S_k\)\( \vdots\) \(6\), mặt khác \(k^2+ k + 4 = k(k + 1) + 4\) là số chẵn nên \(3(k^2+ k + 4)\) \( \vdots\) \(6\), do đó \(S_{k+1}\)\( \vdots\) \(6\)

Vậy \(n^3+ 11n\) chia hết cho \(6\) với mọi \(n\in {\mathbb N}^*\).

Cách khác:

Chứng minh trực tiếp.

Ta có: 

\(\begin{array}{*{20}{l}}
{{n^3}\; + {\rm{ }}11n}\\
{ = {\rm{ }}{n^3}\;--{\rm{ }}n{\rm{ }} + {\rm{ }}12n}\\
{ = {\rm{ }}n({n^2}\;--{\rm{ }}1){\rm{ }} + {\rm{ }}12n}\\
{ = {\rm{ }}n\left( {n{\rm{ }}--{\rm{ }}1} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right){\rm{ }} + {\rm{ }}12n.}
\end{array}\)

Vì \(n\left( {n{\rm{ }}--{\rm{ }}1} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)\) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho \(2\) và 1 thừa số chia hết cho \(3\)

\(n(n{\rm{  - }}1)(n + 1)\,\, \vdots \;6\)

Lại có: \(12n \, \vdots 6 \, \)

\( \Rightarrow \;{n^3}\; + {\rm{ }}11n{\rm{ }} = {\rm{ }}n\left( {n--1} \right)\left( {n + 1} \right) + 12n\;\; \vdots \;\;6.\)

Xemloigiai.com

Xem thêm lời giải SGK Toán lớp 11

Giải bài tập toán lớp 11 như là cuốn để học tốt Toán lớp 11. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và giải tích, hình học SGK Toán lớp 11, giúp ôn luyện thi THPT Quốc gia. Giai toan 11 xem mục lục giai toan lop 11 sach giao khoa duoi day

ĐẠI SỐ VÀ GIẢI TÍCH 11

HÌNH HỌC 11

CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG II. TỔ HỢP - XÁC SUẤT

CHƯƠNG III. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG IV. GIỚI HẠN

CHƯƠNG V. ĐẠO HÀM

CHƯƠNG I. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Xem Thêm

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.