Bài 5 trang 83 SGK Đại số và Giải tích 11

Chứng minh rằng

Đề bài

Chứng minh rằng số đường chéo của một đa giác lồi \(n\) cạnh là \(\displaystyle {{n(n - 3)} \over 2}\)

Phương pháp giải - Xem chi tiết

Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

Sử dụng phương pháp quy nạp toán học để chứng minh.

Lời giải chi tiết

Kí hiệu số đường chéo của đa giác \(n\) cạnh là \(C_n\).

Ta chứng minh \(\displaystyle C_n = {{n(n - 3)} \over 2}\) (1) với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

*) Với \(n = 4\), ta có tứ giác nên nó có 2 đường chéo.

Mặt khác \(\displaystyle {{4(4 - 3)} \over 2} = 2\) nên (1) đúng với \(n = 4\).

Vậy khẳng định đúng với \(n= 4\).

*) Giả sử (1) đúng với \(n = k ≥ 4\), tức là \(C_k = \displaystyle {{k(k - 3)} \over 2}\)

*) Ta phải chứng minh (1) đúng với \(n = k + 1\).
Tức là \(C_{k+1}=\displaystyle {{(k + 1)((k + 1) - 3)} \over 2}\)
Xét đa giác lồi \(k + 1\) cạnh
Đa giác \(k\) cạnh \(A_1A_2...A_k\) có \(\displaystyle {{k(k - 3)} \over 2}\) đường chéo (giả thiết quy nạp).
Nối \(A_{k+1}\) với các đỉnh \(A_2,...,A_{k-1}\), ta được thêm \(k -2\) đường chéo.
Ngoài ra \(A_1A_k\) cũng là một đường chéo.

Vậy số đường chéo của đa giác \(k + 1\) cạnh là

\(\displaystyle {{k(k - 3)} \over 2}+ k - 2 + 1\)

\( = \dfrac{{{k^2} - 3k}}{2} + k - 1 \)

\(= \dfrac{{{k^2} - 3k + 2k - 2}}{2}\)

\(\displaystyle ={{{k^2} - k - 2} \over 2} \)

\( = \dfrac{{\left( {k + 1} \right)\left( {k - 2} \right)}}{2}\)

\(\displaystyle = {{(k + 1)((k + 1) - 3)} \over 2}\)

Như vậy, khẳng định cũng đúng với đa giác \(k + 1\) cạnh

Vậy bài toán đã được chứng minh.

Chú ý:

Trên đây là cách chứng minh bằng quy nạp, các em có thể dễ dàng chứng minhcông thức đó bằng kiến thức chương 2 như sau:

Cách 2: Đa giác lồi \(n\) cạnh có \(n\) đỉnh.

Chọn 2 điểm bất kì trong số các đỉnh của một đa giác ta được 1 cạnh hoặc 1 đường chéo của đa giác.

⇒ Tổng số cạnh và đường chéo của đa giác bằng:

\(C_n^2 = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}\)\( = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{2}\)

⇒ Số đường chéo của đa giác lồi có \(n\) cạnh là:

\(\dfrac{{n\left( {n - 1} \right)}}{2} - n = \dfrac{{{n^2} - n - 2n}}{2}\)\( = \dfrac{{{n^2} - 3n}}{2} = \dfrac{{n\left( {n - 3} \right)}}{2}\)

Vậy ta có đpcm.

Xemloigiai.com

Xem thêm lời giải SGK Toán lớp 11

Giải bài tập toán lớp 11 như là cuốn để học tốt Toán lớp 11. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và giải tích, hình học SGK Toán lớp 11, giúp ôn luyện thi THPT Quốc gia. Giai toan 11 xem mục lục giai toan lop 11 sach giao khoa duoi day

ĐẠI SỐ VÀ GIẢI TÍCH 11

HÌNH HỌC 11

CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG II. TỔ HỢP - XÁC SUẤT

CHƯƠNG III. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG IV. GIỚI HẠN

CHƯƠNG V. ĐẠO HÀM

CHƯƠNG I. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

Xem Thêm

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.