Bài 39 trang 36 Vở bài tập toán 8 tập 1

Giải bài 39 trang 36 VBT toán 8 tập 1. Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia: a) (x^2 +2xy +y^2) : (x+y) ...

Bài làm:

Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:

LG a

\(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\);  

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng các hằng đẳng thức 

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Giải chi tiết:

\(({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {x{\rm{ }} + {\rm{ }}y} \right)\)

\(= {\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}:\left( {x{\rm{ }} + {\rm{ }}y} \right) \)

\(= x{\rm{ }} + {\rm{ }}y\). 


LG b

\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right)\); 

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng các hằng đẳng thức 

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Giải chi tiết:

\((125{x^3} + {\rm{ }}1){\rm{ }}:{\rm{ }}\left( {5x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} \)

\( = (5x + 1)(25{x^2} - 5x + 1):(5x + 1)\)

\(= 25{x^2} - 5x + 1\) 


LG c

\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}):\left( {y{\rm{ }}-{\rm{ }}x} \right)\). 

Phương pháp giải:

- Áp dụng hằng đẳng thức đáng nhớ phân tích đa thức bị chia thành nhân tử, sau đó thực hiện phép chia.

- Áp dụng các hằng đẳng thức 

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

Giải chi tiết:

Tương tự câu a) kết quả: \(y-x\).

Chú ý: 

\(({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}:{\rm{ }}\left( {y{\rm{ }}-{\rm{ }}x} \right){\rm{ }}\)

\(= {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}:{\rm{ }}\left[ { - \left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]{\rm{ }}\)

\(= {\rm{ }} - {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }} = {\rm{ }}y{\rm{ }}-{\rm{ }}x\)

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.