Phần câu hỏi bài 12 trang 35 Vở bài tập toán 8 tập 1

Giải phần câu hỏi bài 12 trang 35 VBT toán 8 tập 1. Điền dấu “x” vào ô thích hợp...

Bài làm:

Câu 36.

Điền dấu “x” vào ô thích hợp.

 

Phương pháp giải:

- Thực hiện phép chia đa thức cho đa thức ở vế trái của đẳng thức sau đó so sánh kết quả đó với vế phải của đẳng thức đã cho.

- Áp dụng quy tắc chia đa thức cho đơn thức, đơn thức cho đơn thức, phân tích đa thức thành nhân tử. 

Lời giải chi tiết:

\(\begin{array}{l}+)\,{\left( {x - y} \right)^3}:{\left( {y - x} \right)^2}\\ = {\left( {x - y} \right)^3}:{\left( {x - y} \right)^2}\\ = x - y\end{array}\)

\(+)\,\left( {{x^4} - 3{x^3} + 4{x^2} - 6x + 4} \right)\)\(:\left( {{x^2} - 3x + 2} \right)\)

\( = \left( {{x^4} - 3{x^3} + 2{x^2} + 2{x^2} - 6x + 4} \right)\)\(:\left( {{x^2} - 3x + 2} \right)\)

\( = \left[ {\left( {{x^4} - 3{x^3} + 2{x^2}} \right) + \left( {2{x^2} - 6x + 4} \right)} \right]\)\(:\left( {{x^2} - 3x + 2} \right)\)

\( = \left[ {{x^2}\left( {{x^2} - 3x + 2} \right) + 2\left( {{x^2} - 3x + 2} \right)} \right]\)\(:\left( {{x^2} - 3x + 2} \right)\)

\( = \left( {{x^2} - 3x + 2} \right)\left( {{x^2} + 2} \right)\)\(:\left( {{x^2} - 3x + 2} \right)\)

\(= {x^2} + 2\)

\(+)\,\left( {{x^3} - 2{x^2} - x + 2} \right):\left( {x - 2} \right)\)

\( = \left[ {\left( {{x^3} - 2{x^2}} \right) + \left( { - x + 2} \right)} \right]\)\(:\left( {x - 2} \right)\)

\( = \left[ {{x^2}\left( {x - 2} \right) - \left( {x - 2} \right)} \right]\)\(:\left( {x - 2} \right)\)

\(= \left( {x - 2} \right)\left( {{x^2} - 1} \right):\left( {x - 2} \right)\)

\( = {x^2} - 1\)

\({\left( {x - 2} \right)^3}\left( {{x^2} - 5x + 6} \right)\)\(:\left( {{x^2} - 4x + 4} \right)\left( {x - 3} \right)\)

\( = {\left( {x - 2} \right)^3}\left( {{x^2} - 2x - 3x + 6} \right)\)\(:\left( {{x^2} - 2.x.2 + {2^2}} \right)\left( {x - 3} \right)\) 

\( = {\left( {x - 2} \right)^3}\left[ {x\left( {x - 2} \right) - 3\left( {x - 2} \right)} \right]\)\(:{\left( {x - 2} \right)^2}\left( {x - 3} \right)\)

\( = {\left( {x - 2} \right)^3}\left( {x - 2} \right)\left( {x - 3} \right)\)\(:{\left( {x - 2} \right)^2}.\left( {x - 3} \right)\)

\( = {\left( {x - 2} \right)^4}\left( {x - 3} \right)\)\(:{\left( {x - 2} \right)^2}\left( {x - 3} \right)\)

\( = {\left( {x - 2} \right)^4}:{\left( {x - 2} \right)^2}\)\(.\left( {x - 3} \right).\left( {x - 3} \right)\)

\( = {\left( {x - 2} \right)^2}.{\left( {x - 3} \right)^2}\)

\( = \left( {{x^2} - 4x + 4} \right).{\left( {x - 3} \right)^2}\)

Chú ý: 

\(\left[ {{{\left( {x - 2} \right)}^3}\left( {{x^2} - 5x + 6} \right)} \right]\)\(:\left[ {\left( {{x^2} - 4x + 4} \right)\left( {x - 3} \right)} \right] \)\(= {x^2} - 4x + 4\)


Câu 37.

Khoanh tròn vào chữ cái trước kết quả đúng

Số dư khi chia đa thức \(2{x^4} - {x^3} + {x^2} - x + 4\)  cho đa thức \(x - 2\)  là

(A) \(18\)

(B) \(30\)

(C) \(46\)

(D) \(50\) 

Phương pháp giải:

Áp dụng quy tắc chia đa thức một biến đã sắp xếp.

Lời giải chi tiết:

Vậy số dư trong phép chia là \(30.\)

Chọn B.




Câu 38.

Nối một biểu thức ở cột bên trái với một biểu thức ở cột bên phải để được đẳng thức đúng.

 

Phương pháp giải:

Thực hiện pháp chia đa thức cho đơn thức ở các biểu thức ở cột bên trái rồi so sánh kết quả với các biểu thức ở cột bên phải.

Lời giải chi tiết:

\(\begin{array}{l}1)\,\,\left( {{x^3} + 3{x^2} + 3x + 1} \right):\left( {x + 1} \right)\\ = {\left( {x + 1} \right)^3}:\left( {x + 1} \right) = {\left( {x + 1} \right)^2}\\ = {x^2} + 2x + 1\end{array}\) 

\(2)\,\,\left( {{x^3} + 3{x^2} - x - 3} \right)\)\(:\left( {{x^2} + 2x - 3} \right)\)

\( = \left( {{x^3} + 2{x^2} - 3x + {x^2} + 2x - 3} \right)\)\(:\left( {{x^2} + 2x - 3} \right)\)

\(= \left[ {\left( {{x^3} + 2{x^2} - 3x} \right) + \left( {{x^2} + 2x - 3} \right)} \right]\)\(:\left( {{x^2} + 2x - 3} \right)\)

\( = \left[ {x\left( {{x^2} + 2x - 3} \right) + \left( {{x^2} + 2x - 3} \right)} \right]\)\(:\left( {{x^2} + 2x - 3} \right)\)

\( = \left( {{x^2} + 2x - 3} \right)\left( {x + 1} \right)\)\(:\left( {{x^2} + 2x - 3} \right) \)

\(= x + 1\)

\(3)\,\left( {{x^3} + 6{x^2} + 11x + 6} \right)\)\(:\left( {{x^2} + 3x + 2} \right)\)

\( = \left( {{x^3} + 3{x^2} + 2x + 3{x^2} + 9x + 6} \right)\)\(:\left( {{x^2} + 3x + 2} \right)\)

\( = \left[ {\left( {{x^3} + 3{x^2} + 2x} \right) + \left( {3{x^2} + 9x + 6} \right)} \right]\)\(:\left( {{x^2} + 3x + 2} \right)\)

\(= \left[ {x\left( {{x^2} + 3x + 2} \right) + 3\left( {{x^2} + 3x + 2} \right)} \right]\)\(:\left( {{x^2} + 3x + 2} \right)\)

\( = \left( {{x^2} + 3x + 2} \right)\left( {x + 3} \right)\)\(:\left( {{x^2} + 3x + 2} \right) \)

\(= x + 3\)

\(\begin{array}{l}4)\,\left( {{x^2} - 5x + 4} \right):\left( {x - 1} \right)\\ = \left( {{x^2} - x - 4x + 4} \right):\left( {x - 1} \right)\\ = \left[ {x\left( {x - 1} \right) - 4\left( {x - 1} \right)} \right]:\left( {x - 1} \right)\\ = \left( {x - 1} \right)\left( {x - 4} \right):\left( {x - 1} \right) = x - 4\end{array}\)

Ta nối như sau:

1 – c; 2 – d; 3 – b; 4 – a.

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.