Phần câu hỏi bài 12 trang 35 Vở bài tập toán 8 tập 1
Bài làm:
Câu 36.
Điền dấu “x” vào ô thích hợp.
Phương pháp giải:
- Thực hiện phép chia đa thức cho đa thức ở vế trái của đẳng thức sau đó so sánh kết quả đó với vế phải của đẳng thức đã cho.
- Áp dụng quy tắc chia đa thức cho đơn thức, đơn thức cho đơn thức, phân tích đa thức thành nhân tử.
Lời giải chi tiết:
\(\begin{array}{l}+)\,{\left( {x - y} \right)^3}:{\left( {y - x} \right)^2}\\ = {\left( {x - y} \right)^3}:{\left( {x - y} \right)^2}\\ = x - y\end{array}\)
\(+)\,\left( {{x^4} - 3{x^3} + 4{x^2} - 6x + 4} \right)\)\(:\left( {{x^2} - 3x + 2} \right)\)
\( = \left( {{x^4} - 3{x^3} + 2{x^2} + 2{x^2} - 6x + 4} \right)\)\(:\left( {{x^2} - 3x + 2} \right)\)
\( = \left[ {\left( {{x^4} - 3{x^3} + 2{x^2}} \right) + \left( {2{x^2} - 6x + 4} \right)} \right]\)\(:\left( {{x^2} - 3x + 2} \right)\)
\( = \left[ {{x^2}\left( {{x^2} - 3x + 2} \right) + 2\left( {{x^2} - 3x + 2} \right)} \right]\)\(:\left( {{x^2} - 3x + 2} \right)\)
\( = \left( {{x^2} - 3x + 2} \right)\left( {{x^2} + 2} \right)\)\(:\left( {{x^2} - 3x + 2} \right)\)
\(= {x^2} + 2\)
\(+)\,\left( {{x^3} - 2{x^2} - x + 2} \right):\left( {x - 2} \right)\)
\( = \left[ {\left( {{x^3} - 2{x^2}} \right) + \left( { - x + 2} \right)} \right]\)\(:\left( {x - 2} \right)\)
\( = \left[ {{x^2}\left( {x - 2} \right) - \left( {x - 2} \right)} \right]\)\(:\left( {x - 2} \right)\)
\(= \left( {x - 2} \right)\left( {{x^2} - 1} \right):\left( {x - 2} \right)\)
\( = {x^2} - 1\)
\({\left( {x - 2} \right)^3}\left( {{x^2} - 5x + 6} \right)\)\(:\left( {{x^2} - 4x + 4} \right)\left( {x - 3} \right)\)
\( = {\left( {x - 2} \right)^3}\left( {{x^2} - 2x - 3x + 6} \right)\)\(:\left( {{x^2} - 2.x.2 + {2^2}} \right)\left( {x - 3} \right)\)
\( = {\left( {x - 2} \right)^3}\left[ {x\left( {x - 2} \right) - 3\left( {x - 2} \right)} \right]\)\(:{\left( {x - 2} \right)^2}\left( {x - 3} \right)\)
\( = {\left( {x - 2} \right)^3}\left( {x - 2} \right)\left( {x - 3} \right)\)\(:{\left( {x - 2} \right)^2}.\left( {x - 3} \right)\)
\( = {\left( {x - 2} \right)^4}\left( {x - 3} \right)\)\(:{\left( {x - 2} \right)^2}\left( {x - 3} \right)\)
\( = {\left( {x - 2} \right)^4}:{\left( {x - 2} \right)^2}\)\(.\left( {x - 3} \right).\left( {x - 3} \right)\)
\( = {\left( {x - 2} \right)^2}.{\left( {x - 3} \right)^2}\)
\( = \left( {{x^2} - 4x + 4} \right).{\left( {x - 3} \right)^2}\)
Chú ý:
\(\left[ {{{\left( {x - 2} \right)}^3}\left( {{x^2} - 5x + 6} \right)} \right]\)\(:\left[ {\left( {{x^2} - 4x + 4} \right)\left( {x - 3} \right)} \right] \)\(= {x^2} - 4x + 4\)
Câu 37.
Khoanh tròn vào chữ cái trước kết quả đúng
Số dư khi chia đa thức \(2{x^4} - {x^3} + {x^2} - x + 4\) cho đa thức \(x - 2\) là
(A) \(18\)
(B) \(30\)
(C) \(46\)
(D) \(50\)
Phương pháp giải:
Áp dụng quy tắc chia đa thức một biến đã sắp xếp.
Lời giải chi tiết:
Vậy số dư trong phép chia là \(30.\)
Chọn B.
Câu 38.
Nối một biểu thức ở cột bên trái với một biểu thức ở cột bên phải để được đẳng thức đúng.
Phương pháp giải:
Thực hiện pháp chia đa thức cho đơn thức ở các biểu thức ở cột bên trái rồi so sánh kết quả với các biểu thức ở cột bên phải.
Lời giải chi tiết:
\(\begin{array}{l}1)\,\,\left( {{x^3} + 3{x^2} + 3x + 1} \right):\left( {x + 1} \right)\\ = {\left( {x + 1} \right)^3}:\left( {x + 1} \right) = {\left( {x + 1} \right)^2}\\ = {x^2} + 2x + 1\end{array}\)
\(2)\,\,\left( {{x^3} + 3{x^2} - x - 3} \right)\)\(:\left( {{x^2} + 2x - 3} \right)\)
\( = \left( {{x^3} + 2{x^2} - 3x + {x^2} + 2x - 3} \right)\)\(:\left( {{x^2} + 2x - 3} \right)\)
\(= \left[ {\left( {{x^3} + 2{x^2} - 3x} \right) + \left( {{x^2} + 2x - 3} \right)} \right]\)\(:\left( {{x^2} + 2x - 3} \right)\)
\( = \left[ {x\left( {{x^2} + 2x - 3} \right) + \left( {{x^2} + 2x - 3} \right)} \right]\)\(:\left( {{x^2} + 2x - 3} \right)\)
\( = \left( {{x^2} + 2x - 3} \right)\left( {x + 1} \right)\)\(:\left( {{x^2} + 2x - 3} \right) \)
\(= x + 1\)
\(3)\,\left( {{x^3} + 6{x^2} + 11x + 6} \right)\)\(:\left( {{x^2} + 3x + 2} \right)\)
\( = \left( {{x^3} + 3{x^2} + 2x + 3{x^2} + 9x + 6} \right)\)\(:\left( {{x^2} + 3x + 2} \right)\)
\( = \left[ {\left( {{x^3} + 3{x^2} + 2x} \right) + \left( {3{x^2} + 9x + 6} \right)} \right]\)\(:\left( {{x^2} + 3x + 2} \right)\)
\(= \left[ {x\left( {{x^2} + 3x + 2} \right) + 3\left( {{x^2} + 3x + 2} \right)} \right]\)\(:\left( {{x^2} + 3x + 2} \right)\)
\( = \left( {{x^2} + 3x + 2} \right)\left( {x + 3} \right)\)\(:\left( {{x^2} + 3x + 2} \right) \)
\(= x + 3\)
\(\begin{array}{l}4)\,\left( {{x^2} - 5x + 4} \right):\left( {x - 1} \right)\\ = \left( {{x^2} - x - 4x + 4} \right):\left( {x - 1} \right)\\ = \left[ {x\left( {x - 1} \right) - 4\left( {x - 1} \right)} \right]:\left( {x - 1} \right)\\ = \left( {x - 1} \right)\left( {x - 4} \right):\left( {x - 1} \right) = x - 4\end{array}\)
Ta nối như sau:
1 – c; 2 – d; 3 – b; 4 – a.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 12. Chia đa thức một biến đã sắp xếp
Xem thêm lời giải Vở bài tập Toán 8
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 2
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc
Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 8
- Tài liệu Dạy - học Toán 8
- SBT Toán lớp 8
- Vở bài tập Toán 8
- SGK Toán lớp 8
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 8
- Tài liệu Dạy - học Hóa học 8
- SBT Hóa lớp 8
- SGK Hóa lớp 8
- Giải môn Hóa học lớp 8
Ngữ Văn
- Đề thi, đề kiểm tra Văn 8
- SBT Ngữ văn lớp 8
- Tác giả - Tác phẩm văn 8
- Văn mẫu lớp 8
- Vở bài tập Ngữ văn lớp 8
- Soạn văn 8 chi tiết
- Soạn văn 8 ngắn gọn
- Soạn văn 8 siêu ngắn
- Bài soạn văn lớp 8 siêu ngắn
- Bài soạn văn 8
- Bài văn mẫu 8
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 8
- SBT Sinh lớp 8
- Vở bài tập Sinh học 8
- SGK Sinh lớp 8
- Giải môn Sinh học lớp 8
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 8 mới
- SGK Tiếng Anh lớp 8
- SBT Tiếng Anh lớp 8 mới
- Vở bài tập Tiếng Anh 8
- SGK Tiếng Anh lớp 8 Mới