Bài 61 trang 40 SBT toán 8 tập 1

Giải bài 61 trang 40 sách bài tập toán 8. Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0...

Bài làm:

Một phân thức có giá trị bằng \(0\) khi giá trị của tử thức bằng \(0\) còn giá trị của mẫu thức khác \(0\). Ví dụ giá trị của phân thức \(\displaystyle {{{x^2} - 25} \over {x + 1}} = 0\) khi \({x^2} - 25 = 0\) và \(x + 1 \ne 0\) hay \(\left( {x - 5} \right)\left( {x + 5} \right) = 0\) và \(x \ne  - 1\). Vậy giá trị của phân thức này bằng \(0\) khi \(x =  \pm 5\).

Tìm các giá trị của \(x\) để giá trị của mỗi phân thức sau bằng \(0\):

LG a

\(\displaystyle {{98{x^2} - 2} \over {x - 2}}\)

Phương pháp giải:

- Xác định giá trị của \(x\) để tử thức của các phân thức bằng \(0\) và mẫu thức khác \(0\).

Giải chi tiết:

\(\displaystyle {{98{x^2} - 2} \over {x - 2}}= 0\) khi \(98{x^2} - 2 = 0\) và \(x – 2 ≠ 0\)

Ta có: \(x – 2 ≠ 0\) \(\Rightarrow x ≠ 2\).

Và \(98{x^2} - 2 = 0\)

\( \Rightarrow 2\left( {49{x^2} - 1} \right) = 0\)

\(\Rightarrow \left( {7x - 1} \right)\left( {7x + 1} \right) = 0  \)

\( \Rightarrow \left[ \begin{array}{l}7x + 1 = 0\\7x - 1 = 0\end{array} \right.\) \( \Rightarrow \left[ \begin{array}{l}x =  - \dfrac{1}{7}\\x = \dfrac{1}{7}\end{array} \right.\)

Có \(\displaystyle x = {1 \over 7}\) và \(\displaystyle x =  - {1 \over 7}\) thỏa mãn điều kiện \(x ≠ 2\).

Vậy \(\displaystyle x = {1 \over 7}\) hoặc \(\displaystyle x =  - {1 \over 7}\) thì phân thức \(\displaystyle {{98{x^2} - 2} \over {x - 2}}\) có giá trị bằng \(0\).


LG b

\(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\)

Phương pháp giải:

- Xác định giá trị của \(x\) để tử thức của các phân thức bằng \(0\) và mẫu thức khác \(0\).

Giải chi tiết:

\(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\)\( \displaystyle = {{3x - 2} \over {{{\left( {x + 1} \right)}^2}}} = 0\) khi \(3x – 2 = 0\) và \({\left( {x + 1} \right)^2} \ne 0\)

Ta có : \({\left( {x + 1} \right)^2} \ne 0\)\( \Rightarrow x + 1 \ne 0\)\( \Rightarrow x \ne  - 1\)

Với \(3x - 2 = 0 \)\(\Rightarrow x = \displaystyle {2 \over 3}\)

Nhận thấy \(x = \displaystyle {2 \over 3}\) thỏa mãn điều kiện \(x ≠ - 1\)

Vậy \(x = \displaystyle {2 \over 3}\) thì phân thức \(\displaystyle {{3x - 2} \over {{x^2} + 2x + 1}}\) có giá trị bằng \(0\). 

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 8

Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

CHƯƠNG 1: TỨ GIÁC

CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.