Bài 63 trang 40 SBT toán 8 tập 1

Giải bài 63 trang 40 sách bài tập toán 8. Tìm giá trị của x để giá trị của các biểu thức trong bài tập 62 bằng 0...

Bài làm:

Tìm giá trị của \(x\) để giá trị của các biểu thức trong bài tập 62 bằng \(0\).

LG a

\(\displaystyle {\displaystyle {{{2x - 3} \over {x - 1}}} \over {x + 2}}\)

Phương pháp giải:

- Tìm điều kiện xác định của biểu thức.

- Biểu thức bằng \(0\) khi tử thức có giá trị bằng \(0\) và mẫu thức khác \(0\).

- Giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện \(x ≠ 1\) và \(x ≠ -2\)

\(\displaystyle {\displaystyle {{{2x - 3} \over {x - 1}}} \over {x + 2}}=0\)

\( \Rightarrow \displaystyle {{\left( {2x - 3} \right)\left( {x + 2} \right)} \over {x - 1}} = 0\)

Biểu thức bằng \(0\) khi \(\left( {2x - 3} \right)\left( {x + 2} \right) = 0\) và \(x - 1 \ne 0\)

\(\left( {2x - 3} \right)\left( {x + 2} \right) = 0 \Rightarrow 2x - 3 = 0\)hoặc \(x + 2 = 0\)

Với \(2x - 3 = 0 \Rightarrow x = 1,5;\)

Với \(x + 2 = 0 \Rightarrow x =  - 2\)

Nhận thấy \(x =  - 2\) không thỏa mãn điều kiện, \(x = 1,5\) thỏa mãn điều kiện.

Vậy \(x = 1,5\) thì biểu thức \(\displaystyle {\displaystyle {{{2x - 3} \over {x - 1}}} \over {x + 2}}\) có giá trị bằng \(0\).


LG b

\(\displaystyle {\displaystyle {{{2{x^2} + 1} \over x}} \over {x - 1}} \)

Phương pháp giải:

- Tìm điều kiện xác định của biểu thức.

- Biểu thức bằng \(0\) khi tử thức có giá trị bằng \(0\) và mẫu thức khác \(0\).

- Giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện \(x ≠ 0\) và \(x ≠ 1\)

\(\displaystyle {\displaystyle {{{2{x^2} + 1} \over x}} \over {x - 1}} = 0\)

\(\Rightarrow \dfrac{{2{x^2} + 1}}{x}:\left( {x - 1} \right) = 0\)\( \Rightarrow \dfrac{{2{x^2} + 1}}{x}.\dfrac{1}{{x - 1}} = 0\)

\( \Rightarrow \displaystyle {{2{x^2} + 1} \over {x\left( {x - 1} \right)}} = 0\)

Biểu thức trên có giá trị bằng \(0\) khi \(2{x^2} + 1 = 0\) và \(x\left( {x - 1} \right) \ne 0\)

Ta có: \(2{x^2} \ge 0 \Rightarrow 2{x^2} + 1 \ne 0\) với mọi \(x\)

Vậy không có giá trị nào của \(x\) để biểu thức \(\displaystyle {\displaystyle {{{2{x^2} + 1} \over x}} \over {x - 1}}\) có giá trị bằng \(0\).


LG c

\(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} - 10x + 25} \over x}}}\) 

Phương pháp giải:

- Tìm điều kiện xác định của biểu thức.

- Biểu thức bằng \(0\) khi tử thức có giá trị bằng \(0\) và mẫu thức khác \(0\).

- Giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện \(x ≠ 0\) và \(x ≠ 5\)

\(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} - 10x + 25} \over x}}}=0\)

\(\begin{array}{l}
\Rightarrow \left( {{x^2} - 25} \right):\dfrac{{{x^2} - 10x + 25}}{x} = 0\\
\Rightarrow \left( {{x^2} - 25} \right).\dfrac{x}{{{x^2} - 10x + 25}} = 0\\
\Rightarrow \left( {x - 5} \right)\left( {x + 5} \right).\dfrac{x}{{{{\left( {x - 5} \right)}^2}}} = 0
\end{array}\)

\( \Rightarrow \displaystyle {{\left( {x + 5} \right)\left( {x - 5} \right)x} \over {{{\left( {x - 5} \right)}^2}}} = 0\)\( \Rightarrow \displaystyle {{x\left( {x + 5} \right)} \over {x - 5}} = 0\)

Biểu thức có giá trị bằng \(0\) khi \(x (x + 5) = 0\) và \(x – 5 ≠ 0\)

Với \(x – 5 ≠ 0\) thì \(x \ne 5\)

Với \(x\left( {x + 5} \right) = 0 \Rightarrow x = 0\) hoặc \(x + 5 = 0 \Rightarrow x =  - 5\)

Nhận thấy \(x = 0\) không thỏa mãn điều kiện,

Và \(x = - 5\) thỏa mãn điều kiện.

Vậy \(x = -5\) thì biểu thức \(\displaystyle {\displaystyle {{x^2} - 25} \over {\displaystyle {{{x^2} - 10x + 25} \over x}}}\) có giá trị bằng \(0\).


LG d

\(\displaystyle {\displaystyle {{x^2} - 25} \over {\displaystyle {{{x^2} + 10x + 25} \over {x - 5}}}}\)

Phương pháp giải:

- Tìm điều kiện xác định của biểu thức.

- Biểu thức bằng \(0\) khi tử thức có giá trị bằng \(0\) và mẫu thức khác \(0\).

- Giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện \(x ≠ 5\) và \(x ≠ -5\)

\(\displaystyle {\displaystyle {{x^2} - 25} \over {\displaystyle {{{x^2} + 10x + 25} \over {x - 5}}}}=0\)  

\(\begin{array}{l}
\Rightarrow \left( {{x^2} - 25} \right):\dfrac{{{x^2} + 10x + 25}}{{x - 5}} = 0\\
\Rightarrow \left( {{x^2} - 25} \right).\dfrac{{x - 5}}{{{x^2} + 10x + 25}} = 0\\
\Rightarrow \left( {x - 5} \right)\left( {x + 5} \right).\dfrac{{x - 5}}{{{{\left( {x + 5} \right)}^2}}} = 0
\end{array}\)

\(\displaystyle  \Rightarrow {{\left( {x + 5} \right){{\left( {x - 5} \right)}^2}} \over {{{\left( {x + 5} \right)}^2}}} = 0\)

\( \Rightarrow \displaystyle {{{{\left( {x - 5} \right)}^2}} \over {x + 5}} = 0\).

Biểu thức bằng \(0\) khi \({\left( {x - 5} \right)^2} = 0\) và \(x ≠ \pm 5\)

Với \({\left( {x - 5} \right)^2} = 0\)\( \Rightarrow x - 5 = 0 \Rightarrow x = 5\)

Nhận thấy \(x = 5\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để biểu thức \(\displaystyle {{{x^2} - 25} \over {\displaystyle {{{x^2} + 10x + 25} \over {x - 5}}}}\) có giá trị bằng \(0\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 8

Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

CHƯƠNG 1: TỨ GIÁC

CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

ÔN TẬP CUỐI NĂM

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.