Bài 65 trang 132 Sách bài tập Hình học lớp 12 Nâng cao

a)Tìm tập hợp các điểm cách đều ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2).

Bài làm:

LG a

Tìm tập hợp các điểm cách đều ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2).

Lời giải chi tiết:

Điểm M(x ; y ; z) cách đều ba điểm A, B, C khi và chỉ khi

      \(\left\{ \matrix{  M{A^2} = M{B^2} \hfill \cr  M{A^2} = M{C^2} \hfill \cr}  \right.\) 

Vậy tập hợp điểm M(x; y; z) là đường thẳng giao tuyến của hai mặt phẳng lần lượt có phương trình (1) và (2). Đường thẳng đó có phương trình là:

                              \(\left\{ \matrix{  x =  - 8 - 3t \hfill \cr  y = t \hfill \cr  z = 15 + 7t \hfill \cr}  \right.\)

Nó chính là trục của đường tròn ngoại tiếp tam giác ABC.


LG b

Tìm quỹ tích các điểm M cách đều hai trục tọa độ Ox, Oy và điểm A(1;1;0).

Lời giải chi tiết:

Xét điểm M(x ; y ; z). Khi đó khoảng cách dx từ M tới trục Ox là

                  \({d_x} = {{\left| {\left[ {\overrightarrow {OM} ,\overrightarrow i } \right]} \right|} \over {\left| {\overrightarrow i } \right|}} = \sqrt {{y^2} + {z^2}} .\)

khoảng cách dy từ M tới trục Oy là

                  \({d_y} = {{\left| {\left[ {\overrightarrow {OM} ,\overrightarrow j } \right]} \right|} \over {\left| {\overrightarrow j } \right|}} = \sqrt {{x^2} + {z^2}} .\)

Mặt khác \(MA = \sqrt {{{(x - {\rm{ 1}})}^2} + {\rm{ }}{{\left( {y{\rm{ }} - {\rm{ 1}}} \right)}^2} + {\rm{ }}{z^2}.} \)

Vậy M  là một điểm của quỹ tích khi

\(\left\{ \matrix{  {y^2} + {z^2} = {x^2} + {z^2} \hfill \cr  {y^2} + {z^2} = {x^2} + {y^2} + {z^2} - 2(x + y) + 2 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  {x^2} = {y^2}  (1) \hfill \cr  {x^2} - 2(x + y) + 2 = 0.   (2) \hfill \cr}  \right.\) 

Từ (1) suy ra x = y hoặc x = -y.

Khi x = y, phương trình (2) có dạng: \({x^2} - 4x + 2 = 0 \Rightarrow x = 2 \pm \sqrt 2 .\)

Trong trường hợp này, quỹ tích M là những điểm (x; y; z) mà:

\(\left\{ \matrix{  x = 2 + \sqrt 2  \hfill \cr  y = 2 + \sqrt 2  \hfill \cr  z = t \hfill \cr}  \right.\)      (3)      và        \(\left\{ \matrix{  x = 2 - \sqrt 2  \hfill \cr  y = 2 - \sqrt 2  \hfill \cr  z = t \hfill \cr}  \right.\)     (4)

Khi \(x =  - y\), phương trình (2) trở thành: \({x^2} + 2 = 0\). Điều này không xảy ra.

Vậy quỹ tích cầm tìm là hai đường thẳng có phương trình (3) và (4)

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Bài 3. Phương trình đường thẳng - SBT Toán 12 Nâng cao

Bài tập & Lời giải:

Xem thêm lời giải SBT Toán lớp 12 Nâng cao

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

GIẢI TÍCH SBT 12 NÂNG CAO

HÌNH HỌC SBT 12 NÂNG CAO

CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.