Bài 74 trang 134 Sách bài tập Hình học lớp 12 Nâng cao

a)Cho hai điểm A(3;1;0), B(-9;4;9)

Bài làm:

LG a

Cho hai điểm A(3;1;0), B(-9;4;9) và \(mp\left( \alpha  \right):2x - y + z + 1 = 0.\) Tìm tọa độ điểm M trên \(\left( \alpha  \right)\) sao cho \(\left| {MA - MB} \right|\) đạt giá trị lớn nhất.

Lời giải chi tiết:

\(\eqalign{

& P(A) = 2.3 - 1 + 0 + 1 = 6 \cr 
& P(B) = 2.( - 9) - 4 + 9 + 1 = - 12 \cr 
& P(A).P(B) = 6.\left( { - 12} \right) < 0 \cr} \)

Do đó hai điểm A, B nằm khác phía đối với mặt phẳng \((\alpha )\).

Gọi A' là điểm đối xứng của điểm A qua mặt phẳng (\(\alpha \)), ta có :

\(\left| {MA - MB} \right| = \left| {MA' - MB} \right| \le A'B\)  (không đổi).

Dấu "=" xảy ra khi A' nằm giữa hai điểm B, M hay M là giao điểm của đường thẳng A'B với mp(\(\alpha \)).

Vậy bài toán được giải theo trình tự sau

* Xác định điểm A' đối xứng với điểm A qua mp(\(\alpha \)),

 Ta tìm được A' = (-1 ; 3 ; -2).

* Tìm giao điểm M của đường thẳng A'B với mp(\(\alpha \)).

Đường thẳng A'B có phương trình: \(\left\{ \matrix{  x =  - 1 + 8t \hfill \cr  y = 3 - t \hfill \cr  z =  - 2 - 11t. \hfill \cr}  \right.\)

Toạ độ điểm M(x; y; z) thoả mãn hệ:

            \(\left\{ \matrix{  x =  - 1 + 8t \hfill \cr  y = 3 - t \hfill \cr  z =  - 2 - 11t \hfill \cr  2x - y + z + 1 = 0 \hfill \cr}  \right. \Rightarrow t = 1 \Rightarrow M = (7;2; - 13).\)

Vậy \(\left| {MA - MB} \right|\) lớn nhất khi \(M = (7;2; - 13).\)


LG b

Cho hai điểm A(3;1;1), B(7;3;9) và \(mp\left( \alpha  \right):x + y + z + 3 = 0.\) Tìm điểm trên \(\left( \alpha  \right)\) để \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất.

Lời giải chi tiết:

Gọi I là trung điểm của đoạn \(AB \Rightarrow I = (5;2;5).\)

Ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}  \Rightarrow \left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = 2MI.\)

Vậy \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất \( \Leftrightarrow \) MI nhỏ nhất với I cố định và \(M \in (\alpha ) \Leftrightarrow M\) là hình chiếu vuông góc với I trên mp(\(\alpha \)).

Toa độ của \(M(x;y;z)\) là nghiệm của hệ:

                    \(\left\{ \matrix{  x = 5 + t \hfill \cr  y = 2 + t \hfill \cr  z = 5 + t \hfill \cr  x + y + z + 3 = 0 \hfill \cr}  \right. \Rightarrow t =  - 5 \Rightarrow M = (0; - 3;0).\)

Kết luận: \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất \( { = 2MI = 10\sqrt 3 } \) khi M= (0; -3; 0).

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Bài 3. Phương trình đường thẳng - SBT Toán 12 Nâng cao

Bài tập & Lời giải:

Xem thêm lời giải SBT Toán lớp 12 Nâng cao

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

GIẢI TÍCH SBT 12 NÂNG CAO

HÌNH HỌC SBT 12 NÂNG CAO

CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.