Bài 76 trang 135 Sách bài tập Hình học lớp 12 Nâng cao

a)Tìm tọa độ điểm đối xứng của

Bài làm:

LG a

Tìm tọa độ điểm đối xứng của \({M_0}(2; - 1;1)\) qua đường thẳng :

\(d:\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - t \hfill \cr  z = 2t. \hfill \cr}  \right.\)

Lời giải chi tiết:

Phương trình mặt phẳng qua điểm \({M_O}(2; - 1;1)\) và vuông góc với đường thẳng d đã cho là

\(2(x - 2) + \left( { - 1} \right)\left( {y + 1} \right) + 2\left( {z - 1} \right) = 0\)

\(\Leftrightarrow 2x - y + 2z - 7 = 0.\)

Gọi \(H(x;y;z)\) là giao điểm của đường thẳng d với mặt phẳng trên, ta có: \(H = \left( {{{17} \over 9}; - {{13} \over 9};{8 \over 9}} \right).\)

Gọi \({M_0}'\left( {x;y;z} \right)\) là điểm đối xứng với điểm \({M_o}\) qua đường thẳng d thì H là trung điểm của đoạn thẳng\({M_o}{M_o}'\) . Do đó

        \(\left\{ \matrix{  {{x + 2} \over 2} = {{17} \over 9} \hfill \cr  {{y - 1} \over 2} =  - {{13} \over 9} \hfill \cr  {{z + 1} \over 2} = {8 \over 9}. \hfill \cr}  \right.\)

Vậy \({M_o}' = \left( {{{16} \over 9}; - {{17} \over 9};{7 \over 9}} \right).\)


LG b

Tìm tọa độ điểm đối xứng của \({M_0}( - 3;1; - 1)\) qua đường thẳng d là giao tuyến của hai mặt phẳng \(\left( \alpha  \right):4x - 3y - 13 = 0\) và \(\left( {\alpha '} \right):y - 2z + 5 = 0.\)

Lời giải chi tiết:

Ta xác định được vectơ chỉ phương của d là \(\overrightarrow {{u_d}}  = \left( {3;4;2} \right).\)

Khi đó phương trình mặt phẳng qua \({M_o}\) và vuông góc với d là :

        \(\left( \alpha  \right):3x + 4y + 2z + 7 = 0.\)

Gọi \(H(x;y;z)\) là giao điểm của d và \(\left( \alpha  \right)\), ta có \({H}= \left( {1; - 3;1} \right).\)

Gọi \(M_o'\left( {x;y;z} \right)\) là điểm đối xứng của \({M_o}\) qua d, ta có \(M_o' = (5; - 7;3).\)


LG c

Tìm độ điểm đối xứng của \({M_0}(2; - 1;1)\) qua đường thẳng d là giao tuyến của hai mặt phẳng \(\left( \alpha  \right):y + z - 4 = 0\) và \(\left( {\alpha '} \right):2x - y - z + 2 = 0.\)

Lời giải chi tiết:

Ta xác định vectơ chỉ phương của d:

\(\overrightarrow {{u_d}}  = \left( {\left| {\matrix{   1 & 1  \cr   { - 1} & { - 1}  \cr  } } \right|;\left| {\matrix{   1 & 0  \cr   { - 1} & 2  \cr  } } \right|;\left| {\matrix{   0 & 1  \cr   2 & { - 1}  \cr  } } \right|} \right)\)

      \(= \left( {0;2; - 2} \right).\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng qua \({M_o}\) và vuông góc với d, khi đó \(\left( \alpha  \right)\) có phương trình: \(y - z + 2 = 0.\)

Gọi H là giao điểm của d với mp\(\left( \alpha  \right)\), toa độ của \(H(x;y;z)\) là nghiệm của hệ:

        \(\left\{ \matrix{  y + z - 4 = 0 \hfill \cr  2x - y - z + 2 = 0 \hfill \cr  y - z + 2 \hfill \cr}  \right. \Rightarrow H = \left( {1;1;3} \right).\)

Từ đó, điểm \(M_o'\) đối xứng với \({M_o}\) qua d là \(M_o' = \left( {0;3;5} \right).\)

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Bài 3. Phương trình đường thẳng - SBT Toán 12 Nâng cao

Bài tập & Lời giải:

Xem thêm lời giải SBT Toán lớp 12 Nâng cao

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

GIẢI TÍCH SBT 12 NÂNG CAO

HÌNH HỌC SBT 12 NÂNG CAO

CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.