Đề kiểm tra 15 phút – Chương 3 – Đề số 2 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút – Chương 3 – Đề số 2 – Đại số và giải tích 11

Đề bài

Câu 1: Cho dãy số có các số hạng đầu là: 8,15,22,29,36… Số hạng tổng quát của dãy số này là:

A.    \({u_n} = 7n + 7\)                                            B. \({u_n} = 7n\)

C. \({u_n} = 7n + 1\)                                             D. không viết được dưới dạng công thức.

Câu 2: Xét tính tăng giảm của dãy số sau: \({u_n} = \dfrac{{{3^n} - 1}}{{{2^n}}}\)

A.    Dãy số tăng                                                  C. Dãy số không tăng không giảm   

B.     Dãy số giảm                                                  D. Cả A, B, C đều sai

Câu 3: Cho dãy  số có các số hạng đầu là : \(\dfrac{1}{2};\dfrac{2}{3};\dfrac{3}{4};\dfrac{4}{5};....\)Số hạng tồng quát của dãy số này là:

A. \({u_n} =   \dfrac{{n + 1}}{n}\)

B. \({u_n} =  \dfrac{n}{{n + 1}}\)

C. \({u_n} =   \dfrac{{ 1}}{n}\) 

D. \({u_n} =   \dfrac{{{n^2} - n}}{{n + 1}}\)

Câu 4: Cho dãy số có các số hạng đầu là: \(-1;1;-1;1;-1;…\) Số hạng tổng quát của dãy số này có dạng:

A.    \({u_n} =   1\)      B. \({u_n} =    - 1\)   

C. \({u_n} = {( - 1)^n}\)   D. \({u_n} =  {( - 1)^{n + 1}}\)

Câu 5: Xét tính tăng giảm và bị chặn của dãy số \(({u_n})\), biết: \({u_n} = \dfrac{{{n^2} + 3n + 1}}{{n + 1}}\)

A. Dãy số tăng, bị chặn trên

B. Dãy số tăng, bị chặn dưới

C. Dãy số giảm, bị chặn trên

D. Cả A,B,C đều sai

Câu 6: Xét tính bị chặn của dãy số sau: \({u_n} = \dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + ... + \dfrac{1}{{n(n + 2)}}\)

A.    Bị chặn                    B. Không bị chặn          C. Bị chặn trên             D. Bị chặn dưới

Câu 7: Cho dãy số \(({u_n})\)với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = \dfrac{1}{2}}\\{{u_{n + 1}} = {u_n} - 2}\end{array}} \right.\) .Công thức số hạng tổng quát của dãy số này là:

A. \({u_n} = \dfrac{5}{2} - n\)         B. \({u_n} = \dfrac{5}{2} - 2n\)        

C. \({u_n} = 2n - \dfrac{5}{2}\)       D. \({u_n} = n - \dfrac{5}{2}\)

Câu 8: Xét tính tăng giảm của dãy số sau: \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_{n + 1}} = \sqrt[3]{{{u^3}_n + 1}},n \ge 1}\end{array}} \right.\)

A.    Tăng               C. Không tăng, không giảm 

B.     Giảm             D. A,B,C đều sai

Câu 9: Cho dãy số \(({u_n})\) với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_{n + 1}} = {u_n} + {n^2}}\end{array}} \right.\). Số hạng tổng quát \({u_n}\) của dãy số là số hạng nào dưới đây?

A.    \({u_n} = 1 + \dfrac{{n(n + 1)(2n + 1)}}{6}\)                                   C. \({u_n} = 1 + \dfrac{{n(n - 1)(2n - 1)}}{6}\)

B.     \({u_n} = 1 + \dfrac{{n(n - 1)(2n + 2)}}{6}\)                                    D. \({u_n} = 1 + \dfrac{{n(n + 1)(2n - 2)}}{6}\)

Câu 10: Cho dãy số \(({u_n})\) với \({u_n} = \dfrac{{ - 1}}{n}\). Khẳng định nào sau đây là sai?

A.    Năm số hạng đầu của dãy là: \( - 1;\dfrac{{ - 1}}{2};\dfrac{{ - 1}}{3};\dfrac{{ - 1}}{4};\dfrac{{ - 1}}{5}\)

B.     Bị chặn trên bởi số M = -1

C.    Bị chặn trên bởi số M = 0

D.    Là dãy số giảm và bị chặn dưới bởi số m = -1

Lời giải chi tiết

1 2 3 4 5
C A B C B
6 7 8 9 10
A B A C B

Lời giải chi tiết:

Câu 1: 

Số hạng tổng quát của dãy số này là \({u_n} = 7n + 1\)

Chọn đáp án C.

Câu 2: 

Ta có: \({u_n} = \dfrac{{{3^n} - 1}}{{{2^n}}} \Rightarrow {u_{n + 1}} = \dfrac{{{3^{n + 1}} - 1}}{{{2^{n + 1}}}} = \dfrac{{{{3.3}^n} - 1}}{{{{2.2}^n}}}\)

\( \Rightarrow {u_{n + 1}} - {u_n} = \dfrac{{{{3.3}^n} - 1}}{{{{2.2}^n}}} - \dfrac{{{3^n} - 1}}{{{2^n}}} \)\(\,= \dfrac{{{{3.3}^n} - 1 - 2\left( {{3^n} - 1} \right)}}{{{{2.2}^n}}} = \dfrac{{{3^n} + 1}}{{{{2.2}^n}}} > 0\)

Dãy số tăng.

Chọn đáp án A.

Câu 3: 

\({u_1} = \dfrac{1}{{1 + 1}};{u_2} = \dfrac{2}{{2 + 1}};{u_3} = \dfrac{3}{{3 + 1}};...\)

Chọn đáp án B.

Câu 4:

Số hạng tổng quát của dãy số là \({u_n} =   {( - 1)^n}\)

Chọn đáp án C.

Câu 5: 

Ta có:

\({u_{n + 1}} - {u_n} = n + 3 - \dfrac{1}{{n + 2}} - n - 2 + \dfrac{1}{{n + 1}} \)\(\,= 1 + \dfrac{1}{{n + 1}} - \dfrac{1}{{n + 2}} \)\(\,= 1 + \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

Dãy số tăng

Ta có: \({u_n} > \dfrac{{{n^2} + 2n + 1}}{{n + 1}} = n + 1 \ge 2 \to \left( {{u_n}} \right)\) bị chặn dưới.

Chọn đáp án B.

Câu 6:

Ta có: \(0 < {u_n} < \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} +  \ldots  + \dfrac{1}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{{n + 1}} < 1\)

Dãy số bị chặn.

Chọn đáp án A.

Câu 7:

Ta có: \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_2} =  - \dfrac{3}{2}\\{u_3} =  - \dfrac{7}{2}\end{array} \right.\quad  \Rightarrow {u_n} = \dfrac{1}{2} - 2(n - 1)\)

Chọn đáp án B.

Câu 8:

Ta có: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_2} = \sqrt[3]{2}\\{u_3} = \sqrt[3]{3}\\{u_4} = \sqrt[3]{4}\end{array} \right. \Rightarrow {u_n} = \sqrt[3]{n}\)

Ta có: \({u_{n + 1}} - {u_n} = \sqrt[3]{{n + 1}} - \sqrt[3]{n}>0 \)

Dãy số tăng.

Chọn đáp án A.

Câu 9:

Ta có: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_2} = 2\\{u_3} = 6\\{u_4} = 15\end{array} \right.\quad  \Rightarrow  {u_n} = 1 + \dfrac{{n(n - 1)(2n - 1)}}{6}\)

Chọn đáp án C.

Câu 10: 

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {{u_n}} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \dfrac{1}{n}} \right) = 0\)

Dãy số  bị chặn trên bởi \(M=0\)

Chọn đáp án B.

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.